
Intro to Onto

Roland Hausser

Universität Erlangen-Nürnberg (em.)

c©Roland Hausser, August 26, 2021

Abstract

For long-term incremental upscaling to be successful, the computational re-

construction of a complex natural mechanism must be input-output equiv-

alent with the prototype, i.e., the reconstruction must take the same input

and produce the same output in the same processing order as the original.

Accordingly, the modeling of natural language communication in Database

Semantics (AIJ’01) uses a time-linear derivation order for the speaker’s out-

put and the hearer’s input. The language-dependent surfaces serving as the

vehicle of content transfer from speaker to hearer are raw data, e.g., sound

waves or pixels, without meaning or any grammatical properties whatsoever,

but measurable by natural science.1

1 Ontology

The term ontology may be transliterated as ‘account of what there is.’ The ontology

of a field of science comprises the basic elements and relations assumed to allow a

complete analysis of its phenomena. For example, the Presocratics tried to explain

nature based on an ontology of fire, water, air, and earth. Today, the ontology of

physics is based on a space-time continuum, protons, electrons, neutrons, quarks,

neutrinos, etc.

Similarly in theories of meaning in philosophy. There was a time in which mean-

ing was based on naming; for example, the celestial body rising in the morning

and setting in the evening served as the meaning of the word sun. Then meaning

became defined in terms of set-theoretic denotations in possible worlds. Which

ontology is required for building the computational cognition of a talking robot?

Just as an ontology without subatomic particles is unsuitable for modern physics,

an ontology of computational cognition without an agent, without a distinction be-

tween an agent-external reality and agent-internal processing, without interfaces

for recognition and action, without a distinction between the speak and the hear

mode, without an on-board database (memory) with an on-board orientation sys-

tem (OBOS), and without an algorithm for moment-by-moment monitoring is un-

suitable for the task of building a talking robot.

2 Computational Cognition

The ontological requirements for computational cognition were essentially laid

down in the year 1945 as the von Neumann machine (vNm): the interface com-

ponent of DBS corresponds to the vNm input-output device, the DBS on-board

1Thanks to Prof. McNeilage, director of the Phonetics Lab in the Linguistics Department at UT

Austin during my time as a Ph.D. student. The chance to participate as a test person in phonetic

research experiments instilled a permanent appreciation of raw data in language communication.

1



database corresponds to the vNm memory, and the DBS left-associative operations

algorithm corresponds to the vNm arithmetic-logic.

Designing and building the computational cognition of a talking autonomous

robot is not only of interest for a wide range of practical applications, but consti-

tutes the ultimate standard for evaluating the many competing theories of natural

language in today’s linguistics, language philosophy, language psychology, and

computer science. It leads from the sign-based substitution-driven ontology of

mathematics and symbolic logic to the new (or extended) ontology of agent-based

data-driven robotics in general and DBS in particular. It also leads from Generative

Grammar (hence GG) and its attempt to discover an innate human language ability

to the effective transfer of content from the speaker to the hearer by means of raw

data.

Communication is successful if the content encoded by the speaker into raw data

equals the content decoded from the raw data by the hearer. DBS constructs content

from the three basic content kinds of (i) concept, (ii) indexical, and (iii) name.

Each has its characteristic computational mechanism: concepts use computational

pattern matching based on the type-token relation, indexicals use pointing at values

of the agent’s on-board orientation system, and names use an explicit or implicit

act of baptism which inserts a named referent as core value into a name proplet

(CASM’17).

3 Agent-Based Data-Driven vs. Sign-Based Substitution-Driven

Most analyses of natural language in today’s linguistics, philosophy, and com-

puter science rely on a precomputational, sign-based, substitution-driven ontology.

Sign-based means: no distinction between the speak and the hear mode. Sub-

stitution-driven means: using a start symbol as input and generating output based

on possible substitutions by rewrite rules. Thereby different propositions are de-

rived from the same S node and assigned the same denotation, i.e., True or False.

However, for a functionally complete, scientific reconstruction of natural language

communication, the start button is uniquely unsuitable as input to the speak mode

and the truth-values are uniquely unsuitable as output of the hear mode.

In DBS, propositions do not denote but are content, and different propositions

are different contents. A content is defined as a set of proplets, i.e., order-free

(which is essential for storage in and retrieval from a content-addressable on-board

database). Proplets are defined as nonrecursive feature structures with ordered at-

tributes (which is essential for efficient pattern matching). The proplets in a content

are connected by the classical semantic relations of structure, i.e., functor-argument

and coordination, coded by address.

The ontology of DBS is agent-based and data-driven. Agent-based means: de-

sign of a cognitive agent with (i) an interface component for converting raw data

into cognitive content (recognition) and converting cognitive content into raw data

(action), (ii) an on-board, content-addressable database (memory) for the storage

and retrieval of content, and (iii) separate treatments of the speak- and the hear-

2



mode. Data-driven means: (a) mapping a cognitive content as input to the speak

mode into a language-dependent surface as output, and (b) mapping a surface as

input to the hear mode into a cognitive content as output.

4 Reconciling the Hierarchical and the Linear Aspects of Communication

A content serving as input to the speak mode and as output of the hear is defined

as a set of proplets, connected by the semantic relations of structure, coded by

address:

4.1 CONTENT OF I saw you.




























sur: I

noun: pro1

cat: s1

sem: sg

fnc: see

mdr:

nc:

pc:

prn: 3

























































sur: saw

verb: see

cat: #n #a decl

sem: past

arg: pro1 pro2

mdr:

nc:

pc:

prn: 3

























































sur: you

noun: pro2

cat: sp2

sem: sg

fnc: see

mdr:

nc:

pc:

prn: 3





























The classical semantic relations of structure are subject/predicate, object\predicate,

modifier|modified, and conjunct−conjunct. In 4.1, the semantic relations are sub-

ject/predicate and object\predicate, indicated by bold face font. In successful

communication, the input content of the speak mode and the output content of the

hear mode are the same.

5 Introducing Surface Linearity in the Speak Mode

The speak mode converts the hierachy of the input content into the linear structure

of the output surface by navigating along the semantic relations of structure:

5.1 GRAPH ANALYSIS UNDERLYING PRODUCTION OF 4.1

1
2

pro1

(ii) signature

N

(i) SRG (semantic relations graph)

pro1

V

see

pro2

N

(iii) NAG (numbered arcs graph)

pro2

3
4

see

(iv) surface realization

V/N
I
1

saw
4

N\VV\N
you

3 2

N/V
.

The (iv) surface realization consists of three lines, showing (1) the arc numbers,

(2) the surfaces realized from the goal proplet, and (3) the traversal operations.

The operations driving the navigation in 5.1 are listed as follows:

3



5.2 SEQUENCE OF OPERATION NAMES AND SURFACE REALIZATIONS

arc 1: V$N from see to pro1 I (TExer 2.3.8)

arc 2: N1V from pro1 to see saw (TExer 2.3.9)

arc 3: V%N from see to pro2 you (TExer 2.3.10)

arc 4: N0V from pro2 to see . (TExer 2.3.11)

6 Re-conversion of Linear Input Surface into Hierarchical Output Content

The hear mode re-converts the stream of raw input data into the hierarchical struc-

ture of 4.1 by incremental lexical lookup and syntactic-semantic composition.

6.1 GRAPHICAL HEAR MODE DERIVATION OF THE CONTENT 4.1

automatic word form recognition

unanalyzed surface

syntactic−semantic parsing

sem: past
arg: 
prn:

sur: I
noun: pro1
cat: s1
sem: sg
fnc: 

sem: past
arg: 
prn:

you

verb: see

verb: see
cat: n’ a’ v

cat: n’ a’ v

sur: I
noun: pro1
cat: s1
sem: sg
fnc: 

sem: sg
fnc: 

noun: pro2
sur: you

prn: prn: 

prn: 3

cat: sp2

sawI .

sur: 

cat: v’ decl

.
verb: v_1

noun: pro1
cat: s1
sem: sg
fnc: sleep

sem: past
arg: pro1

verb: see
cat: #n’ a’ v

prn: 3 prn: 3

noun: pro1
cat: s1
sem: sg
fnc: sleep

sur: 

cat: v’ decl

.
verb: v_1

prn: 3

sem: sg

noun: pro2

prn: 3
fnc: see

cat: sp2

sem: sg
fnc: 

noun: pro2
sur: you

prn: 3

cat: sp2

sur: sur: 

sur: 

sem: past

prn: 3

verb: see

arg: pro1 pro2

cat: #n’#a’ v

sur: sur: 

result

sem: past

verb: see

arg: pro1 pro2

cat: #n’#a’ decl
noun: pro1
cat: s1
sem: sg
fnc: see
prn: 3 prn: 3

sem: sg

noun: pro2

prn: 3
fnc: see

cat: sp2

sur: sur: sur: 

cross−copying 1

2 cross−copying 

3 absorption

sur: saw

sur: saw

The composition is time-linear in that the current next word (lexical proplet) is

related semantically to a proplet in the current sentence start (set of connected

proplets).

The hear mode operations are of three kinds: (i) cross-copying (connective ×),

(ii) absorption (connective ∪), and (iii) suspension (connective ∼). Operations with

4



the same connective may re-introduce different semantic relations of structure, for

example, SBJ×PRD and OBJ×PRD, defined as follows:

6.2 CROSS-COPYING pro1 AND saw WITH SBJ×PRD (LINE 1)

SBJ×PRD (h1)

pattern

level









noun: α

cat: NP

fnc:

prn:K

















verb: β

cat: NP′ X v

arg:

prn:









⇒









noun: α

cat: NP

fnc: β

prn: K

















verb: β

cat: #NP′ X v

arg: α

prn: K









NP ε {snp, pnp, s1, s3, p1, sp2, p3}

NP′ ε {n′, ns3′, n-s3′, ns1′, ns2p′, ns3′, ns13′}

If NP = s1, then NP′ ε {ns1′, ns13′ , n′}

If NP = sp2, then NP′ ε {ns2p′, n-s3′, n′}

If NP ε {s3, snp}, then NP′ ε {ns3′, ns13′, ns3′, n′}

If NP = p1, then NP′ ε {ns2p′, n-s3′, n′}

If NP ε {p1,p3, pnp}, then NP′ ε {ns2p′, n-s3′, n′}

⇑ ⇓

content

level





























sur: I

noun: pro1

cat: s1

sem: sg

fnc:

mdr:

nc:

pc:

prn: 3

























































sur: saw

verb: see

cat: n′ a′ v

sem: past

arg:

mdr:

nc:

pc:

prn:

























































sur:

noun: pro1

cat: s1

sem: sg

fnc: see

mdr:

nc:

pc:

prn: 3

























































sur:

verb: see

cat: #n′ a′ v

sem: past

arg: pro1

mdr:

nc:

pc:

prn: 3





























6.3 CROSS-COPYING saw AND pro2 WITH PRD×OBJ2 (LINE 2)

PRD×OBJ (h22)

pattern

level









verb: β

cat: #X′ N′ Y γ

arg: Z

prn: K

















noun: α

cat: CN′ N

fnc:

prn:









⇒









verb: β

cat: #X′ #N′ Y γ

arg: Z α

prn: K

















noun: α

cat: CN′ N

fnc: β

prn: K









N ε {obq, snp, pnp, s1, sp2, p1, p3}

N′ ε {d′, a′, be′, hv′}, CN′ ε {NIL, nn′, sn′, pn′}, γ ε {v, vi, vimp, inf}

If N ε {s1, sp2, p1, p3}, then N′ = be′; otherwise N′ ε {obq, snp, pnp}

⇑ ⇓

content

level





























sur:

verb: see

cat: #n′ a′ v

sem: past

arg: pro1

mdr:

nc:

pc:

prn: 3

























































sur: you

noun: pro2

cat: sp2

sem:

fnc:

mdr:

nc:

pc:

prn:

























































sur:

verb: see

cat: #n′ #a′ v

sem: past

arg: pro1 pro2

mdr:

nc:

pc:

prn: 3

























































sur:

noun: pro2

cat: sp2

sem:

fnc: see

mdr:

nc:

pc:

prn: 3





























Comparison of the SBJ×PRD and the OBJ×PRD application illustrates the highly

precise coding of grammatical detail, provided by the computational pattern match-

ing and the variable restrictions of DBS. For the complete declarative analysis of

5



I saw you. in the speak and hear mode see TExer 2.3.

7 Derivation Order

The regular, total-order derivation of time-linear left-associative LAG (as the pre-

cursor of DBS) is in contrast to the irregular, partial-order derivations of today’s

CG (bottom up) and PSG (top down):

7.1 THREE CONCEPTUAL DERIVATION ORDERS (FOCL 10.1.1)

��✒ ❅❅■

��✒ ❅❅■

��✒ ❅❅■

��✒ ❅❅■

LA Grammar

��✒ ❅❅■

��✒ ❅❅■ ��✒ ❅❅■

��✒ ❅❅■

C Grammar

❅❅❘��✠

❅❅❘��✠❅❅❘��✠

❅❅❘��✠

PS Grammar

bottom-up left-associative bottom-up amalgamating top-down expanding

The initial empirical test of using the left-associative derivation order for the syntactic-

semantic analysis of a nontrivial set of natural language expressions was program-

ming the time-linear derivations of 221 constructions of German and 114 construc-

tions of English during a research stay at CSLI Stanford in 1984-1986.3

8 Type Transparency

In computational linguistics, the purpose of formal grammars for fragments of nat-

ural language is (i) a linguistically well-motivated analysis of examples which is

suitable (ii) for efficient automatic derivation by a computer program and (iii) for

systematic upscaling. This requires input-output equivalence between the declara-

tive derivation order of the formal grammar and the procedural derivation order of

the parser.

Called type transparency by Berwick and Weinberg, input-output equivalence

between a formal grammar and its parser was originally intended also in PSG:

Miller and Chomsky’s original (1963) suggestion is really that gram-

mars be realized more or less directly as parsing algorithms. We might

take this as a methodological principle. In this case we impose the

condition that the logical organization of rules and structures incorpo-

rated in the grammar be mirrored rather exactly in the organization of

the parsing mechanism. We will call this type transparency.

Berwick and Weinberg (1984), p. 39

On page 81, Berwick and Weinberg define absolute type transparency as follows:

6



8.1 DEFINITION OF ABSOLUTE TYPE TRANSPARENCY

• For any given language, parser and generator use the same formal grammar,

• apply the rules of the grammar directly,

• in the same order as the grammatical derivation,

• take the same input expressions as the grammar, and

• produce the same output expressions as the grammar.

It turned out, however, that a direct application of the grammar rules by a parser

is inherently impossible in PSG (FoCL pp. 175 et seq.). The historical background

for this is that Post (1936) developed his production or rewrite system to mathe-

matically characterize the notion of effective computability in recursion theory.4 In

this original application, a derivation order based on the substitution of signs by

other signs is perfectly natural. When Chomsky (1957) borrowed the Post produc-

tion system under the name Phrase Structure Grammar (PSG) for analyzing natural

language, he inherited its substitution-driven derivation order.

Because a parser takes terminal strings as input but a PSG a start symbol, PSGs

and their parsers are not input-output equivalent – which means that a type trans-

parent PSG parser can not exist. Instead, huge intermediate structures are required

to reconcile the time-linear input order of the parser and the top-down substitution

order of the grammar’s rewrite rules (Earley 1970).

Consequently, (i) the computational complexity of PSG is polynomial,5 and (ii)

debugging and upscaling in PSG-based parsing is greatly impeded: if a well-

formed input is rejected or an ill-formed input accepted, the error must be found in

the complex intermediate structures of the context-free PSG parser, which are not

easy to read. In type-transparent LA-grammar, in contrast, an error is located in the

output close to where the time-linear derivation broke off or the ill-formed continu-

ation began. Moreover, the error is explicitly documented in the automatic analysis

serving simultaneously as the trace of the parse and the linguistic analysis.6

9 Four Kinds of Type-Token Relations

The interaction between the DBS agent’s computational cognition and its cognition-

external surroundings is based on the pattern-matching of concepts. Recognition is

3Thanks to CSLI Stanford for their generous hospitality, especially by providing the at the time

most advanced workstations by HP with a team of helpful operators, and to the DFG for a five year

Heisenberg grant. The research stay was initially intended to program the Montague Grammar de-

fined in Surface Compositional Grammar (SCG). Even though the syntactic-semantic λ-derivations

of surfaces into formulas of intensional logic were explicitly defined to high standard, a reasonable

programming of the ‘fragment’ presented unsurmountable difficulties. In response, a time-linear ap-

proach was developed, programmed, and published as NEWCAT, including the source code written

in Lisp.
4See for example Church (1956), p. 52, footnote 119.
5In contrast to the linear time complexity of type-transparent LAG/DBS (TCS’92).
6FoCL Sects. 9.4, 10.4, 10.5, specifically 10.5.5.

7



a concept type matching raw data, resulting in a token stored in short term memory.

Action is adapting a type to a purpose, resulting in a token realized as raw data.

DBS uses the type-token relation directly for elementary proplets of the semantic

kinds concept, indirectly for indexicals and names, and for complex contents of

declarative, interrogative, and imperative sentences.

9.1 TYPE AND TOKEN OF A CONCEPT

type token




























sur: Hund

noun: dog

cat: def sg

sem:

fnc:

mdr:

nc:

pc:

prn:

























































sur: Hund

noun: dog

cat: def sg

sem:

fnc: snore

mdr:

nc:

pc:

prn: 24





























The attributes fnc and prn of the type have no value, while those of the token have

the values snore and 24. The sur value is from German.

9.2 TYPE AND TOKEN OF AN INDEXICAL

type token STAR




























sur: you

noun: pro2

cat: sp2

sem:

fnc:

mdr:

nc:

pc:

prn:

























































sur: you

noun: pro2

cat: sp2

sem:

fnc: see

mdr:

nc:

pc:

prn: 24





























. . . . . .













S: veranda

T: Monday

A: John

R: Mary

prn: 24













The type has no prn value and no STAR to point at, while the token has the prn

value 24 and may point at the STAR value John or Mary, depending on the syntax.

9.3 TYPE AND TOKEN OF A NAME

type token




























sur: Fido

noun:

cat: snp

sem: m sg

fnc:

mdr:

nc:

pc:

prn:

























































sur: Fido

noun: [dog x]

cat: snp

sem: m sg

fnc:

mdr:

nc:

pc:

prn:24





























The type has no prn value and the core attribute noun has no ‘named referent’,

8



while the token has the prn value 24 and the core attribute has the named referent

[dog x].

Finally consider the type and token of a DBS proposition,7 defined as a content.

The syntactic mood is specified by the verb’s cat value decl as a declarative.

9.4 TYPE OF A CONTENT

type




























sur:

noun: dog

cat: snp

sem: def sg

fnc: find

mdr:

nc:

pc:

prn: K

























































sur:

verb: find

cat: #n′ #a′ decl

sem: past ind

arg: dog bone

mdr:

nc:

pc:

prn: K

























































sur:

noun: bone

cat: snp

sem: indef sg

fnc: find

mdr:

nc:

pc:

prn: K





























This content is a type because there is no STAR and the prn value is a variable,

here K. It is a nonlanguage content because the sur slots are empty.

9.5 CORRESPONDIG TOKEN

token




























sur:

noun: dog

cat: snp

sem: def sg

fnc: find

mdr:

nc:

pc:

prn: 12

























































sur:

verb: find

cat: #n′ #a′ decl

sem: past ind

arg: dog bone

mdr:

nc:

pc:

prn: 12

























































sur:

noun: bone

cat: snp

sem: indef sg

fnc: find

mdr:

nc:

pc:

prn: 12













































S: yard

T: friday

A: sylvester

R:

3rd:

prn: 12

















This content is a token because the three content proplets and the STAR proplet

are connected by a common prn constant, here 12. According to the STAR, the

content resulted as an observation by the agent Sylvester on Friday in the yard.

In summary, the types of individual proplets are lexical word form analyses

which are provided by the on-board memory for automatic word form recogni-

tion/production. The type of a complex content results from concatenating proplet

types with the semantic relations of structure. The content type of a proposition is

turned into a content token by adding a STAR and replacing the prn variables with

constants (simultaneous substitution).

7An elementary proposition is a content which uses exactly one prn value.

9



10 Conclusion

In computer science, the input-output distinction holds (i) between a system and

its external environment and (ii) between interacting components within a system.

The sign-based substitution-driven ontology of phrase structure grammar (PSG)

avoids input-output interaction with the system-external reality by using the same

S node like a start button as input for the random generation of all the different

grammatical structures in the fragment. The agent-based data-driven ontology of

DBS, in contrast, provides external nonlanguage input-output in (i) action and (ii)

recognition between agents and their environment, and external language input and

output between agents in the (iii) speak and (iv) hear modes.

The input to the (iii) speak mode is a hierarchical content and the output a linear

surface. The input to the (iv) hear mode is a linear surface and the output a hierar-

chical content. The challenge for a functionally complete, scientific computational

reconstruction of natural language communication is a bidirectional conversion be-

tween a linear and a hierarchical coding of the semantic relations of structure.

In DBS, the speak mode turns hierarchical input contents into linear output sur-

faces by navigating along the semantic relations of structure in the input. The

hear mode turns linear input surfaces into hierarchical output content by incremen-

tal time-linear syntactic-semantic composition between the sentence start, defined

as a set of proplets already connected (at least partially), and the next word, re-

introducing the classical semantic relations of subject/predicate, object\predicate,

modifier|modified, and conjunct−conjunct, coded by address.

Bibliography

AIJ’01 = Hausser, R. (2001) "Database Semantics for Natural Language," Artifi-

cial Intelligence, 130.1:27–74, Elsevier

Berwick, R.C., and A.S. Weinberg (1984) The Grammatical Basis of Linguistic

Performance: Language Use and Acquisition, Cambridge, Mass.: MIT Press

CASM’17 = Hausser, R. (2017) “A computational treatment of generalized refer-

ence,” Complex Adaptive Systems Modeling, Vol. 5.1:1–26, Springer

Church, A. (1932). “A set of postulates for the foundation of logic,” Annals of

Mathematics Series 2. 33 (2): 346–366

Earley, J. (1970) “An Efficient Context-Free Parsing Algorithm,” Commun. ACM

13.2:94–102

FoCL = Hausser, R., ([1999, 2001] 2014) Foundations of Computational Linguis-

tics; Human-Computer Communication in Natural Language, pp. 518. Springer

10



MacNeilage, P. (2008) The Origin of Speech, Oxford: OUP

Miller, G., and N. Chomsky (1963) “Finitary models of language users,” in D.

Luce (ed.), Handbook of Mathematical Psychology. John Wiley & Sons. pp.

2–419.

Neumann, J.v. (1945) First Draft of a Report on the EDVAC, in IEEE Annals of

the History of Computing. Vol. 15, Issue 4, 1993, doi:10.1109/85.238389, pp.

27–75

NEWCAT = Hausser, R. (1986) NEWCAT: Natural Language Parsing Using

Left-Associative Grammar, (Lecture Notes in Computer Science 231), 540 pp.,

Springer

Post, E. (1936) “Finite Combinatory Processes — Formulation I,” JSL, Vol. I:103–

105

SCG = Hausser, R. (1984) Surface Compositional Grammar, Munich: Wilhelm

Fink Verlag

TCS’92 = Hausser, R. (1992) “Complexity in Left-Associative Grammar,” Theo-

retical Computer Science, Vol. 106.2:283-308, Elsevier

TExer = Hausser, R. (2020) Twentyfour Exercises in Linguistic Analysis, DBS soft-

ware design for the Hear and the Speak mode of a Talking Robot, lagrammar.net

11


	Ontology
	Computational Cognition
	Agent-Based Data-Driven vs. Sign-Based Substitution-Driven
	Reconciling the Hierarchical and the Linear Aspects of Communication
	Content of I saw you.

	Introducing Surface Linearity in the Speak Mode
	Graph analysis underlying production of 4.1
	Sequence of operation names and surface realizations

	Re-conversion of Linear Input Surface into Hierarchical Output Content
	Graphical hear mode derivation of the content 4.1
	Cross-copying pro1 and saw with SBJPRD (line 1)
	Cross-copying saw and pro2 with PRDOBJ (line 2)

	Derivation Order
	Three conceptual derivation orders (FoCL 10.1.1)

	Type Transparency
	Definition of absolute type transparency

	Four Kinds of Type-Token Relations
	Type and token of a concept
	Type and token of an indexical
	Type and token of a name
	Type of a content
	Correspondig token

	Conclusion
	Bibliography

