
Grammatical Disambiguation
The Natural Language Linear Complexity Hypothesis

Roland Hausser
Universität Erlangen-Nürnberg (em.)

©Roland Hausser, March 19, 2022

Abstract

By combining concatenations of constant complexity with a strictly time-

linear derivation order, the computational complexity degree of DBS (AIJ’01)

is linear time (TCS’92). The only way to increase DBS complexity above lin-

ear would be a recursive ambiguity in the hear mode. In natural language,

however, recursive ambiguity is prevented by grammatical disambiguation.

An example of grammatically disambiguating a nonrecursive ambiguity

is the ‘garden path’ sentence The horse raced by the barn fell (Bever

1970). The continuation horse+raced introduces a local ambiguity between

horse raced (active) and horse which was raced (passive), leading to two par-

allel derivation strands up to and including barn. Depending on continuing

after barn with an interpunctuation or a verb, one of the [-global] readings

(FoCL 11.3) is grammatically eliminated.

An example of grammatically disambiguating a recursive ambiguity is

The man who loves the woman who loves Tom who Lucy loves, with

the subordinating conjunction who. Depending on whether the continuation

after who is a verb or a noun, one of the two [-global] readings is grammati-

cally eliminated (momentary choice between who being subject or object).

keywords: recursive ambiguity, grammatical disambiguation, agent-based data-driven

versus sign-based substitution-driven ontology, holistic vs. incremental loading of input

1 Degrees of Computational Complexity

Given an algorithm taking an input of length n (n>1), its time complexity is com-

monly estimated (i) by counting the number of primitive operations needed for

adding a next input item and (ii) the increase in the number of operations with the

increase of the length n. The basic complexity degrees are a linear, polynomial,

exponential, or unbounded increase with the length of the input:

1.1 BASIC DEGREES OF COMPLEXITY

1. Linear complexity

1·n, 2·n, 3·n, 4·n, etc. (e.g., 2, 4, 6, 8, .. for n=2)

2. Polynomial complexity

n1, n2, n3, n4, etc. (e.g., 2, 4, 9, 16, 25, 36, 49, 64, ... for n=2))

3. Exponential complexity

1n, 2n, 3n, 4n, etc. (e.g., 1, 4, 8, 16, 32, 64, 128, 256,... for n=2))

4. Undecidable

n·∞

1

In praxi, the most important distinction is between the computationally tractable

and intractable complexity degrees. As shown by Garey and Johnson (1979), the

boundary is between the (2) polynomial and the (3) exponential algorithms:

1.2 TIMING OF POLYNOMIAL VS. EXPONENTIAL ALGORITHMS

3n

n2
1015

10 50 100

1.0

35.7

problem size n

time
complexity

seconds seconds seconds

seconds years centuries

0.001 0.125

0.001

The primitive operation1 used is adding the next word (i.e., the minimum). The

respective application numbers are shown for lengths 10, 50, and 100.

2 The Orthogonal LAG and PSG Complexity Hierarchies

Two complexity hierarchies are orthogonal if they classify certain formal languages

differently. For example, in PSG the formal languages anbn and WWr are in the

same complexity class, polynomial, but in different classes, C1 (linear) vs. C2

(polynomial), in LAG. In PSG, anbn and anbncn are in different complexity classes,

polynomial vs. exponential, but in the same class, C1 (linear), in LAG. The formal

language Lno is polynomial in PSG, but exponential in LAG. The reason for these

differences is (i) the substitution-driven derivation of PSG and (ii) the data-driven

derivation of LAG.

Substitution-driven PSG favors input which is pairwise inverse, like abcd dcba.

Formal languages which require no more than this correspondence, are called

context-free and of polynomial complexity, but formal languages which exceed

the pairwise inverse correspondence are computationally intractable in PSG.2

Data-driven LAG favors input which is not recursively ambiguous. Unambigu-

ous languages, such as anbn, anbncn, anbncndn, etc., a2n

, an!, and single return

languages, such as WWr, WW, and WWW, are computationally tractable, but lan-

guages which are recursively ambiguous with a degree greater 2, such as 3SAT,

1Earley (1970) characterizes a primitive operation as “in some sense the most complex operation

performed by the algorithm whose complexity is independent of the size of the grammar and the

input string.” The nature of the primitive operation varies from one grammar formalism to the next.

For example, Earley chose the operation of adding a state to a state set as the primitive operation

of his famous algorithm for context-free grammars (FoCL 9.3). In LA Grammar, the subclass of

C-LAGs uses a rule application as its primitive operation.
2According to Harrison (1978, p.219f.) and Ginsburg (1980, p.8), it is ‘doubtful’ that the structure

of context-free PSG approximates the syntax of the programming languages. In other words, the

programming languages must be computationally tractable but certainly not pairwise inverse.

2

SUBSET-SUM, Lno, and HCFL (Greibach 1973) are computationally intractable

in LAG/DBS,

The two complexity hierarchies may be compared graphically as follows:

2.1 ORTHOGONAL RELATION BETWEEN C AND CF LANGUAGES

✬

✫

✩

✪

✬

✫

✩

✪

✬

✫

✩

✪

anbn

anbncn

anbncndnen

a2
n

an!
C1

C2

C3

✬

✫

✩

✪
WWr WW WWW

Lno

HCFL 3SAT SUBSET-SUM

context-free languages

That LAG classifies Lno with inherently complex 3SAT and SUBSET-SUM is not

because Lno is particularly complex, but because it is recursively ambiguous. That

PSG classifies anbn and anbncn in different classes, context-free (polynomial) vs.

context-sensitive (exponential), is not because anbncn is particularly complex as

compared to anbn, but because it is not pairwise. That PSG classifies WWr and

WW in different classes, context-free vs. context-sensitive, is not because WW is

particularly complex as compared to WWr, but because it is not inverse.

3 Comparing Explicitly Defined Examples in PSG and DBS

Formal languages critical for distinguishing the complexity hierarchies of PSG and

LAG are anbn and anbncn:

3

3.1 EXPLICIT PSGS FOR THE FORMAL LANGUAGES anbn AND anbncn

anbn (polynomial n3) anbncn (exponential)

V =def {S, a, b} V =def {S, B, C, D1, D2, a, b, c}

VT =def {a, b} VT =def {a, b, c}

P =def {S→ a S B P =def {S→ a S B C, rule 1

S→ a b} S→ a b C, rule 2

C B→ D1 B rule 3a

D1 B→ D1 B rule 3b

D1 D2 → B D2 rule 3c

B D2→ B C rule 3d

B b→ b b rule 4

B C→ B c rule 5

c C→ c c} rule 6

The PSG for anbncn generates pairwise inverse aSBC, aaSBCBC, aaaSBCBCBC,

etc. with rule 1 and concludes with rule 2. Then the BCBCBC... sequence is

changed into lower case and reordered step by step into bbb...ccc... with rules 3a–

6. The rules compute possible substitutions and distinguish between nonterminal

(e.g., B) and terminal (e.g., b) symbols.

The operations of a LAG, in contrast, compute possible continuations and dis-

tinguish between the surface and the category of an input, e.g., [aaabb (abb)]

(FoCL 10.4.1), running the derivation via the category, used as counter.

3.2 EXPLICIT LAGS FOR anbn AND anbncn

anbn (linear) anbncn (linear)

LX =def {[a (a)], [b (b)]} LX =def {[a (a)], [b (b)], [c (c)]}

STS =def {[(a) {r1, r2}]} STs =def {[(a) {r1, r2}]}

r1: (X) (a) ⇒ (aX) {r1, r2} r1: (X) (a) ⇒ (aX) {r1, r2}

r2: (aX) (b)⇒ (X) {r2} r2: (aX) (b)⇒ (Xb) {r2, r3}

STF =def {[ε rp2]}. r3: (bX) (c)⇒ (X) {r3}

STF =def {[ε rp3]}.

Another language pair critical for the distinction between PSG and LAG are in-

verse WWr and repeating WW. Both are pairwise, but inverse WWr is context-free

(n3 polynomial), while repeating WW is context-sensitive (exponential) in PSG:

3.3 EXPLICIT PSG FOR WWr AND INFORMAL FOR WW
WWr (polynomial n3) WW (exponential)

V =def {S, a, b, c, d} Similar to the PSG for anbncn

VT=def {a, b, c, d} (3.1), the derivation generates

P =def {S→ a S a, intermediate expressions like aSA,

S→ b S b, abSBA, abcSCBA, etc., and

S→ c S c, then reorders in lower case.

S→ d S d,

S→ a a,

S→ b b,

S→ c c,

S→ d d}

In LAG, WWr and WW are in the same complexity class, namely n2 polynomial:

4

3.4 EXPLICIT LAGS FOR WWr AND WW

WWr (polynomial n2)

LX =def {[a (a)], [b (b)], [c (c)], [d (d)] . . . }

STS =def {[(segc) {r1, r2}]}, where segc ε {a, b, c, d, . . . }

r1: (X) (segc) ⇒ (segc X) {r1, r2}

r2: (segc X) (segc) ⇒ (X) { r2 }

STF =def {[ε rp2] }

WW (polynomial n2)

LX =def {[a (a)], [b (b)], [c (c)], [d (d)] . . . }

STS =def {[(segc) {r1, r2}]}, where segc ε {a, b, c, d, . . . }

r1: (X) (segc) ⇒ (X segc) {r1, r2}

r2: (segc X) (segc) ⇒ (X) { r2}

STF =def {[ε rp2]}

In WWr, rule r1 adds the counterpart letter (segc) at the beginning of the category,

but at the end in WW.

The recursive ambiguity of WWr and WW is of the kind single return (FoCL

11.5.3): in each derivation step, the rule package {r1, r2} of r1 calls two input-

compatible rules (ambiguity), but the continuation split is disambiguated by the

following input.

We complete the orthogonal relation between the PSG and the LAG complexity

hierarchies with the noise language Lno, which is context-free (polynomial) in PSG,

but C3 (exponential) in LAG. Devised by D. Applegate, its expressions consist of

an arbitrary sequence of 0 and 1, followed by the separation symbol #, followed

by an inverse copy with arbitrarily missing symbols of the initial sequence. Thus,

when the initial sequence is read in by a LAG, it is not known until the end which

pre-separation digits turn out to be genuine and which are noise:

3.5 EXPLICIT PSG AND LAG FOR Lno

Lno in PSG (context-free, polynomial) Lno in LAG (C3, exponential)

S→ 1S1 LX =def {[0 (0)], [1 (1)], [# (#)]}

S→ 1S STS =def {[(segc) {r1, r2, r3, r4, r5}] },

S→ 0S0 where seg ε {0, 1}.

S→ 0S r1: (segc)(segd)⇒ ε {r1, r2, r3, r4, r5}

S→ # r2: (segc)(segd)⇒ (segd){r1, r2, r3, r4, r5}

r3: (X)(segc)⇒ (X){r1 r2, r3, r4, r5}

r4: (X)(segc)⇒ (segc X){r1 r2, r3, r4, r5}

r5: (X)(#)⇒ (X){r6}

r6: (segc X)(segc)⇒ (X) {r6}

STF =def {[ε rp6]}

The complexity hierarchies of PSG and LAG may be summarized as follows:

5

3.6 COMPLEXITY DEGREES OF THE LAG AND PSG HIERARCHIES

LA Grammar PS Grammar

undecidable — recursively enumerable languages

decidable A languages3 —

exponential B languages context-sensitive languages

exponential C3 languages

polynomial C2 languages context-free languages

linear C1 languages regular languages

The LAG hierarchy does not have a class of undecidable languages, while the PSG

hierarchy does not have a class of decidable languages. The statement ‘there is a

parser for the context-free languages’ means that there is a PSG parser which can

handle all languages in the class, e.g., the Earley parser. ‘There is no parser for

the context-sensitive languages’ means that there is no parser for all languages in

the class. Thus, there may exist a computationally tractable parser specifically for

context-sensitive anbncn, but not for inherently complex 3SAT or SUBSET-SUM,

which are also context-sensitive.

4 Sub-Hierarchy of C1, C2, and C3 LAGs

Compared to the A and B LAGs, the C LAGs constitute the most restricted class

of LAGs, parsing the smallest LAG class of languages. However, compared to

the context-free languages (which are properly contained in the C languages), the

class of C languages is quite large (2.1). It is therefore theoretically interesting and

practically useful to differentiate the C LAGs further into subclasses by defining a

sub-hierarchy.

In the C LAGs, the complexity of a rule application is constant (TCS’92, Def-

inition 4.1). Therefore, the number of rule applications in a C LAG derivation

depends solely on the ambiguity degree. Different ambiguity degrees naturally de-

fine the sub-hierarchy of the C LAGs: in the subclasses of C1, C2, and C3 LAGs,

increasing degrees of ambiguity result in increasing degrees of complexity.

The subclass with the lowest complexity and the lowest generative capacity is the

C1 LAGs. A C LAG is a C1 LAG if it is not recursively ambiguous. The class of

C1 languages parses in linear time and contains all deterministic context-free lan-

guages which are recognized by a DPDA without ε-moves, plus context-free lan-

guages with –recursive ambiguities, e.g., akbkcmdm ∪ akbmcmdk, as well as many

context-sensitive languages, e.g., akbkck, akbkckdkek, {akbkck}∗, Lsquare, Lk

hast ,

a2
i

, akbmck·m, and ai!, whereby the last one is not even an index language.4 Exam-

ples of unambiguous context-sensitive C1 LAGs are akbkck defined in 10.3.3 and

3The algebraic definition of LA-grammar (FoCL 10.2) benefited greatly from help by Profes-

sor Dana Scott, who also provided the proof that the class of A-languages comprises all recursive

languages (FoCL. 11.1.3).

6

a2
i

=def {ai | i is a positive power of 2} (TCS’92 Definition 5.) A non-recursively

ambiguous C1 LAG is akbkcmdm ∪ akbmcmdk (TCS’92)5.

A C LAG is a C2 LAG if it generates recursive ambiguities which are restricted

by the single return principle.

4.1 THE SINGLE RETURN PRINCIPLE (SRP)

A recursive ambiguity is single return if exactly one of the parallel

paths returns to the state resulting in the ambiguity in question.

The class of C2 languages parses in polynomial time and contains certain non-

deterministic context-free languages like WWR and L∞
hast , plus context-sensitive

languages like WW, Wk≥3, {WWW}∗, and W1W2WR
1 WR

2 .6

For example, the worst case in parsing WWR is inputs consisting of an even

number of the same word (letter). Consider the derivation structure for the input

a a a a a a, with 1 for r-1 and 2 for r-2.

4.2 DERIVATION STRUCTURE OF THE WORST CASE IN WWR

rules: applications:

2 a$a

122 aa$aa

11222 aaa$aaa

11122 aaaa$aa

11112 aaaaa$a

11111 aaaaaa$

The unmarked middle of the intermediate strings generated in the course of the

derivation is indicated by $. Of the six hypotheses, the first two are invalidated by

the fact that the input string continues, the third hypothesis correctly corresponds

to the input a a a a a a, and the remaining three hypotheses are invalidated by the

fact that the input does not provide any more words (grammatical disambiguation

in a formal language).

A C LAG is a C3 LAG if it generates unrestricted recursive ambiguities. The

class of C3 languages parses in exponential time and contains the deterministic

context-free language Lno, the hardest context-free language HCFL, plus context-

sensitive languages like SubsetSum and SAT, which are N P -complete.7

4A C1 LAG for akbkcmdm ∪ akbmcmdk is defined in FoCL 11.5.2; for Lsquare and Lk

hast in

Stubert (1993), pp. 16 and 12; for akbkckdkek in CoL, p. 233; for akbmck·m in TCS’92, p. 296 and

for a2
i

in FoCL 11.5.1. A C1 LAG for ai! is sketched in TCS’92, p. 296, footnote 13.
5This language has been called inherently ambiguous because there is no unambiguous PSG for

it (Hopcroft and Ullman 1979, pp. 99–103).
6The C2 LAGs for WWR and WW are defined in 3.3; for L∞

hast in Stubert 1993, p. 16; for WWW

in CoL, p. 215; for Wk≥3 in CoL, p. 216; and for W1W2WR
1 WR

2 in FoCL 11.5.7.
7A C3 LAG for Lno is defined in 3.5; for HCFL in Stubert (1993), p. 16; for SubsetSum in FoCL

11.5.8; and for SAT in TCS’92, p. 302, footnote 19.

7

5 Applying LAG to Natural Language

In a LAG, the lexical entries have a two-level structure, consisting of a surface and

a category, e.g., [a (a)] in linear notation. During a derivation, the surface and the

category may diverge, e.g., [aaab (aab)] (FoCL 10.4.1, segment 4). In a LAG for

a formal language, the rules have abstract names like r-1 or r-2.

In the application of LAG to natural language, the possible divergence between

surfaces and categories is used for defining grammatically motivated categories

such as [gave (N′ D′ A′ V)]. Also, the abstract rule names are replaced by gram-

matically meaningful ones like DET+CN or NP+VERB.

The following analysis is based on the LAG LA E2 defined in FoCL 17.4.1 for a

small fragment of English:

5.1 TIME-LINEAR LAG ANALYSIS OF AN ENGLISH SENTENCE

gave
(N’ D’ A’ V)

Mary
(SNP)

Mary gave
 (D’ A’ V)

Fido
(SNP)

Mary gave Fido
 (A’ V)

a
(SN’ SNP)

Mary gave Fido a
 (SN’ V)

bone
(SN)

(V)
Mary gave Fido a bone

The first word [Mary (SNP)] cancels8 the valency position N′ in the second word

[gave (N′ D′ A′ V)], resulting in the new sentence start [Mary gave (D′ A′ V)] one

level above (bottom up). Next the current sentence start [Mary gave (D′ A′ V)]

combines with the current next word [Fido (SNP)], resulting in the new sentence

start [Mary gave Fido (A′ V)] with the canceled valency position D′. This time-

linear procedure continues until all valency positions are canceled, resulting in

[Mary gave Fido a bone (V)].

The application of this method to 221 constructions of German and 114 construc-

tions of English in NEWCAT’86 showed that a strictly time-linear derivation order

for natural language was empirically feasible. Also, the NEWCAT program was

shown to be extremely efficient computationally as compared to competing efforts

at the time, such as phrase structure-based LFG.

Nevertheless, NEWCAT is still a stand-alone algorithm in the style of classic

complexity analysis. Instead of being data-driven, the system of rule packages

8

in a LAG constitutes a finite state transition network (FSN). By annotating the

transitions with the associated rule name, the FSN is turned into an ATN.

Consider the ATN of the LAG grammar for context-sensitive anbncn (3.2):

5.2 ANNOTATED TRANSITION NETWORK OF THE LAG FOR anbncn

i ivr1 r2 r3

r1 r2 r3

r2

ii iii

This ATN consists of four states, represented as the circles i – iv. Each state is

defined as an ordered pair consisting of a rule name and a rule package. State i

corresponds to the start state STS, while the states ii, iii, and iv correspond to the

output of rules r1, r2, and r3. State iv has a double circle, indicating a possible final

state (definition of STF in 3.2).

However, when the LAG system was applied to basic structures of natural lan-

guage, such as extending declaratives to yes-no interrogatives, it turned out that

the use of rule packages became prohibitively complex. Consider the finite state

backbone of LA E3 defined in FoCL 17.5.6.

5.3 ANNOTATED TRANSITION NETWORK FOR LA E3

i

ii

(iv) 3, 7 NOM+FV

(iii) 2, 6, 15, 22 DET+N

(ii) 1, 5, 14, 21 DET+ADJ (v) 8, 11, 16, 18 FVERB+MAIN

(vi) 9, 12, 20 AUX+NFV

(vii) 4 AUX+MAIN

(viii) 10, 13, 17, 19 IP

4

DET+N

DET+ADJ

FV+MAINNOM+FV
v

1
6

21
2

22

5 14

16

viii

117

15

8

12 18

AUX+NFV

20

9

10

IP

AUX+MAIN

13
17

193

iii iv

vivii

Including the start state, there are eight states. As in 5.2, the transition from one

state to the next is annotated with a rule name, thus restricting the transition to a

specific categorial operation. The problem was not in writing the rule packages for

controlling the parsing of a particular natural language construction, but writing

the ATN for the complete system.

8At this stage of the theory, valency positions are canceled by deletion, as in CG. This is not

a problem as long as the theory is sign-based. In DBS, however, the valency information must be

preserved for repeated hear say in the speak mode by using #-marking for canceling. For example,

[Mary gave (D′ A′ V)] cancels by deletion in LAG, but in DBS by #-marking, as in [Mary gave

(#N′ D′ A′ V)].

9

It turned out that such ATNs do not provide the hoped for contribution to heuris-

tics. This coincided with a more general problem inherited from classic complexity

theory, namely the stand-alone nature of LAG as an algorithm.

6 From LAG to the DBS Hear Mode

LAG and DBS share the time-linear derivation order, but differ in their method

of loading the input, which is holistic in LAG and incremental in DBS. Holistic

loading takes a complete sequence as input, e.g., aaabbbccc, and then processes

it word by word from left to right. This works for parsing individual sentences in a

collection of linguistic examples, but is impractical for texts like a Tolstoy novel.

Processing in a holistic loading system may be illustrated as follows:

6.1 CONNECTING A SENTENCE START TO ITS SUCCESSOR

surface level aa abbbbccc⇒ aaa bbbccc
rule level r1:(X) (a) ⇒ (aX) {r1, r2}

At the surface level, the next word is added at the end of the current sentence start,

regardless of the categorial operation. At the rule level, the category of the sentence

start is (X) and the category of the next word is (a). In 3.2, rule r1 attaches the next

word category a at the front end of the sentence start variable (X) as (aX) and calls

the rule package {r1, r2}. The rules of the rule package are applied to the resulting

sentence start and the new next word in the loaded input sequence.

In the hear mode, the start of parsing is a special case because an initial opera-

tion activated by a proplet matching its second input pattern can not find a proplet

matching its first input proplet at an empty now front. In a text, the initial compo-

sition is unique, but in the linguistic analysis of isolated examples each has one.

For example, the derivation of The dog barked. as an isolated linguistic ex-

ample begins with the recognition of the surface The. Based on matching a type

on raw data provided by the input component, it serves as input to automatic word

form recognition. The output is stored at the now front, which happens to be empty:

6.2 STORING SENTENCE-INITIAL WORD AT EMPTY NOW FRONT

member proplets now front owners

sur: Der

noun: N_n

cat: CN′ NP

sem: sg

fnc:

. . .

prn: 23

the

Without a next word yet, no operation is activated and the derivation continues with

another automatic word form recognition, resulting in the following constellation:

10

6.3 STORING NEXT WORD AT NOW FRONT

member proplets now front owners

sur: Hund

noun: dog

cat: sn

sem: sg

fnc:

mdr:

nc:

pc:

prn: 23

dog

. . .

sur: Der

noun: N_n

cat: CN′ NP

sem: sg

fnc:

mdr:

nc:

pc:

prn: 23

the

The token line for storing a next word at the now front is determined alphabetically

by the core value, here dog. This supports efficient computational string search

(Knuth et al. 1977) for storage and retrieval.

From here on out, the derivation continues in standard fashion. The ‘next word,’

here a noun, activates all recognition operations which match it with their second

input pattern (operations 28–53 in TExer). Activated operations look at the now front

for input matching their first input pattern. Those which find one apply.

6.4 ABSORBING dog INTO the WITH DET∪CN

DET∪CN (h46)

pattern

level

noun: N_n

cat: CN′ NP

sem: Y

prn: K

noun: α

cat: CN

sem: Z

prn:

⇒

noun: α

cat: NP

sem: Y Z

prn: K

Agreement conditions
⇑ ⇓

content

level

sur: Der

noun: n_1

cat: nn′ np

sem: def

fnc:

mdr:

nc:

pc:

prn: 23

sur: Hund

noun: dog

cat: sn

sem: sg

fnc:

mdr:

nc:

pc:

prn:

sur:

noun: dog

cat: snp

sem: def sg

fnc:

mdr:

nc:

pc:

prn: 23

The successful application of a hear mode operation triggers the lookup and storage

of another ‘next word,’ here bark, by automatic word form recognition:

11

6.5 STORING NEXT WORD AT CURRENT NOW FRONT

member proplets now front owners

sur: bellte

verb: bark

cat: ns13′ v

sem: ind past

arg:

. . .

prn: 23

bark

. . .

sur:

noun: dog

cat: snp

sem: def sg

fnc:

. . .

prn: 23

dog

The storage of a next word automatically activates all operations which match the

next word with their second input pattern (operations 1–27 in TExer).

6.6 CROSS-COPYING dog AND bark WITH SBJ×PRD

SBJ×PRD

pattern

level

noun: α

cat: NP

fnc:

prn:K

verb: β

cat: NP′ X v

arg:

prn:

⇒

noun: α

cat: NP

fnc: β

prn: K

verb: β

cat: #NP′ X v

arg: α

prn: K

Agreement conditions
⇑ ⇓

content

level

sur:

noun: dog

cat: snp

sem: def sg

fnc:

. . .

prn: 23

sur: bellte

verb: bark

cat: ns3′ v

sem: past

arg:

. . .

prn:

sur:

noun: dog

cat: snp

sem: def sg

fnc: bark

. . .

prn: 23

sur:

verb: bark

cat: #ns3′ v

sem: past

arg: dog

. . .

prn: 23

Depending on the input, the derivation may continue indefinitely, for example by

adding interpunctuation and going on to the next sentence, resulting in a content

defined as a set (order-free) of proplets connected and ordered by address, e.g.,

(bark 23). With the start of a new sentence, the accumulation of parallel readings,

if any, starts from scratch.

7 From the DBS Hear Mode to the DBS Speak Mode

The counterpart of the DBS hear mode is the speak mode. It rides piggyback on

the think mode which activates content by navigating along the semantic relations

of structure coded by address. A speak mode derivation is a think mode navigation

with the optional production of language-dependent surfaces.

12

A think-speak mode operation has one input and one output pattern. The op-

erators are $ and 1 for the subject/predicate, % and 0 for the object\predicate, ↓
and ↑ for the modifier|modified, and→ and← for the conjunct−conjunct relation.

Language-dependent surfaces are produced from the goal proplet.

The following speak mode production uses the content derived in 6 as input:

7.1 NAVIGATING WITH V$N FROM bark TO dog

V$N (s1)

pattern

level

verb: α

arg: β X

prn: K

⇒

sur: lexnoun(β̂)

noun: β

fnc: α

prn: K

#-mark β in the arg slot of proplet α.

⇑ ⇓

content

level

sur:

verb: bark

cat: #n′ decl

sem: ind past

arg: dog

mdr:

nc:

pc:

prn: 23

sur: Der Hund

noun: dog

cat: snp

sem: sg m

fnc: bark

mdr:

nc:

pc:

prn: 23

The language-dependent surface is realized from a list which connects relatively

language-independent core values to their language-dependent counterpart, here

dog⇒ Hund, and interprets the cat value def and the sem value sg as the German

definite article form der. The resulting surface is Der Hund.

The next navigation step returns from the subject to the verb:

7.2 NAVIGATING WITH N1V FROM dog BACK TO bark

N1V (s2)

pattern

level

noun: β

fnc: α Y

mdr: Z

prn: K

⇒

sur: lexverb(α̂)

verb: α

arg: #β Y

prn: K

#-mark α in the fnc slot of proplet β.

Z is NIL, or elementary and #-marked.
⇑ ⇓

content

level

sur:

noun: dog

cat: snp

sem: sg m

fnc: bark

. . .

prn: 23

sur: bellte_.
verb: bark

cat: #n′ decl

sem: ind past

arg: #dog

. . .

prn: 23

Lexverb uses bark, ind past, and decl to produce the surface bell-te_.. In LAG,

the rules to be tried are called by the rule package of the current rule. In DBS, in

contrast, the operations to be tried are activated by the next word (data-driven).

13

8 Incremental Lexical Lookup in the DBS Hear mode

The next word originates as raw data input to a sensor of the agent’s interface

component and is recognized as a language-dependent surface. The surface is used

for lexical lookup, the result of which is stored at the current now front (CC 12.4.4):

8.1 OWNER-BASED STORAGE OF LANGUAGE PROPLET AT NOW FRONT

ii memory component

member proplets of A-memory now front owners

. . .

sur:

verb: bark

cat: n′ v

sem: past ind

arg:

. . .

prn: 37

⇐ bark

⇑
i interface component

recognized

surface

analyzed

surface

raw input data ⇒ bell-te ⇒

sur: bellte

verb: bark

cat: n′ v

sem: past ind

arg:

. . .

prn:

⇒ bark

At level (i), a language-dependent word form type matching the raw data results

in the recognized surface (⇒) bell-te (here letter sequence). It is used for lexical

lookup of the analyzed surface, i.e., the complete proplet, from the allomorph trie

structure (CC 12.5.3). Using string search, the core value bark serves (a) to access

(⇑) the token line of bark and (b) to store (⇐) the proplet retrieved from the trie

structure, without the sur value but with an automatically assigned prn value, at

the now front (ii).

Each activated operation looks at the now front for a proplet matching its first

input pattern. In natural language parsing, the number of proplets at the current

now front is usually no more than four or five because the now front is cleared

whenever a proposition (clause) is completed, indicated by in- or decrementing

the prn value (CLaTR2 11.4.10). After processing, now front clearance leaves the

proplets behind as member proplets (loomlike clearance). The now front is cleared

by moving it and the owner values one step to the right into fresh memory space.

Content stored as member proplets cannot be changed. The only way to correct

is adding new content, like a diary entry referring by address to the content to

be corrected. Proplets without an open continuation slot are not tried as input to

a first input pattern. The only way to increase the DBS hear mode complexity

above linear is a recursive ambiguity, which is prevented in natural language by

grammatical disambiguation.

14

9 Ambiguity in Natural Language

There is repeating ambiguity in natural language, but to increase complexity, the

readings would have to be [+global] (FoCL 11.3). In natural language, systemati-

cally repeating9 [+global] ambiguity does not seem to exist. Consider, for example,

the following derivation structure:10

9.1 AMBIGUITY STRUCTURE OF AN UNBOUNDED SUSPENSION

1
say

Whom
1 1

John

2 2 2
that
1 1 1

1 1 1

John

4 4 4

love?

loves?

does

does

3 3

Bill

3

1

that Mary claims
1 1 1

that Suzy loves?

A

B

D

that Bill believes that Mary loves?C

In line A, who(m) is the object of an elementary proposition with a transitive verb

which does not take a clausal object. Thus all proplets in line A share the prn

value 1. In line B, in contrast, the matrix verb takes a clausal object which who(m)

belongs to. Thus, does John say X has the prn value 2, whereby X is Bill loves

who(m) with the prn value 1. The construction in line B terminates because the

verb love does not take a clausal object.

Line C branches off line B because the first object clause uses a verb which takes

a second object clause as its oblique argument. Thus, does John say X continues

to have the prn value 2, but the new object clause Bill believes Y has the new

prn value 3, whereby Y is that Mary loves who(m) with the prn value 1. The

construction terminates in branch C.

Line D branches off C because the second object clause uses a verb which takes

a third object clause as its argument. Thus, does John say X continues to have

the prn value 2, Bill believes Y continues to have the prn value 3, but the new

object clause that Mary claims Z has the prn value 4, whereby Z is that Suzy

loves who(m) with the prn value 1.

Even though an unbounded suspension (i) may be continued indefinitely and

(ii) causes a systematic syntactic ambiguity, it does not increase the computa-

tional complexity of natural language (FoCL 11.5). This is because one of the

two branches always terminates before the next ambiguity is complete. In other

words, there is no global ambiguity in 9.1, in the same sense as there is no global

ambiguity in the ‘garden path’ sentence (FoCL 11.3.6).

Another construction with a repeating local ambiguity is adnominal (aka relative)

clauses. See TExer3 Sects. 3.3, 3.4, and 5.6 for complete declarative analyses. As

9Systematically repeating (i.e. recursive or iterative) [+global] readings would be a serious im-

pediment to successful communication.
10For the complete declarative DBS analysis of this example see TExer 5.5.

15

long as no natural language can be shown to have repeating global ambiguity, the

Linear Complexity Hypothesis for natural language is without counterexample.

10 Language Dependence of Grammatical Disambiguation

Ambiguities are language dependent. For example, the translation of flying air-

planes into German disambiguates the English readings grammatically into flie-

gende Flugzeuge and Flugzeuge fliegen. The translation of horse raced by the

barn into German disambiguates the English readings into Pferd jagte ... vorbei

and Pferd das ... vorbeigejagt wurde. The translation of man who into German

disambiguates the English readings into Man der and Man den. English Who

does John say that ... doesn’t even have a literal translation into German. With

English as an isolating and German as an inflectional language, local ambiguities

and their grammatical resolution seem to be a typological phenomenon.

11 The Bach-Peters Sentence

The computational undecidability of natural language11 alleged by Phrase Struc-

ture Grammar (PSG) is based on a transformational analysis of the following ex-

ample:

THE MAN WHO DESERVES it WILL GET THE PRIZE he WANTS.

The formal proof by Peters and Ritchie (1973)12 relies on two reciprocal recur-

sions, one deriving the pronoun it transformationally from the ‘full’ noun phrase

the prize he wants, the other deriving the pronoun he transformationally from the

‘full’ noun phrase man who deserves it.

The alternative DBS hear mode analysis (CLaTR2 11.4.9–11.4.12) is of linear

time complexity because the coreference between the prize he wants and it is

defined by address instead of a transformation, and similarly for the coreference

between man who deserves it and he. As in natural language communication,

ambiguity in DBS is limited to the hear mode. The speak mode counterpart to

hear mode ambiguity is paraphrase. While the hearer’s ambiguity may result in

multiple simultaneous readings, paraphrase is a matter of choice which depends on

the speaker’s rhetorical purpose. Each paraphrase is of linear complexity.

Hear mode ambiguity is of two kinds, [+global] and [-global] (FoCL 11.3). Rel-

evant for complexity are only the [+global] ambiguities. Because each reading of

length n requires exactly n-1 derivation steps and each derivation step of the DBS

C-LAGs are below a grammar-dependent constant C, the computational complex-

ity of the hear mode depends solely on the number of readings.

11Classifying natural language as computationally undecidable has been noted to be unlikely by

Harman (1963), Gazdar (1981), McCawley (1982), Ross (1986), and many others.
12In direct consultation with Prof. Chomsky (personal communication by Bob Ritchie, Stanford

1983).

16

12 Conclusion

This paper compares the computational complexity of three algorithms for analyz-

ing natural language: (i) the sign-based substitution-driven algorithm of PSG, (ii)

the sign-based data-driven algorithm of LAG, and (iii) the agent-based data-driven

speak and hear mode algorithms of DBS.

Sign-based PSG and LAG have in common that they do not distinguish between

the speak and the hear mode, but differ in their derivation principle, which is

substitution-driven in PSG, but data-driven in LAG. More specifically, the input

to a derivation in PSG, i.e. ST, EST, REST, GB, GPSG, HPSG, etc., is always

the same S node (for start or sentence) and the output is different phrase struc-

tures. The input to a LAG derivation, in contrast, is a time-linear sequence of

lexical proplets provided by automatic word form recognition, and the output a

content in which the lexical proplets are connected by the classical semantic rela-

tions of structure, i.e. subject/predicate, object\predicate, modifier|modified, and

conjunct−conjunct.

Data-driven LAG and DBS have in common that they compute possible contin-

uations, but differ in that DBS distinguishes between the speak and the hear mode,

while LAG does not. In agent-based DBS, the input to the speak mode is a content,

defined as a set of proplets connected by the classical semantic relations of struc-

ture, and the output a language-dependent surface. The input to the hear mode is a

language-dependent surface and the output a content.

Summary:

Ambiguity in natural language communication is limited to hear mode interpreta-

tion and may result in multiple simultaneous readings. The speak mode counterpart

to ambiguity is paraphrase. For speak mode production, alternative paraphrases

require a choice, guided by speaker’s rhetorical purpose. Each paraphrase is by

principle unambiguous and therefore of linear complexity.

Hear mode ambiguity is of two kinds, [+global] and [-global] (FoCL 11.3). Rel-

evant for computational complexity are the [+global] ambiguities. Because each

reading of length n requires exactly n-1 derivation steps and each derivation step of

the C-LAGs is by definition below a grammar-dependent constant C, the computa-

tional complexity of the DBS hear mode depends solely on the number of readings.

Because recursive ambiguity is prevented by grammatical disambiguation (9.1),

the hear mode is of linear complexity, like the speak mode. Therefore the overall

computational complexity degree of natural language is linear.

Bibliography

Aho, A. V., and J. D. Ullman (1977) Principles of Compiler Design, Reading,

MA: Addison-Wesley

AIJ’01 = Hausser, R. (2001) “Database Semantics for Natural Language,” Artificial

Intelligence Journal, Vol. 130.1:283–305, Amsterdam, Elsevier

17

Bever, T.G (1970) “The cognitive basis for linguistic structures”. In: J.R. Hayes

(ed.) Cognition and the development of language, pp. 279-362, New York: Wiley

CC = Hausser, R. (2019) Computational Cognition, Integrated DBS Software De-

sign for Data-Driven Cognitive Processing, pp. 237, lagrammar.net

CLaTR = Hausser R. (2011) Computational Linguistics and Talking Robots; Pro-

cessing Content in DBS, pp. 286. Springer (preprint CLaTR2 lagrammar.net)

CoL = Hausser, R. (1989) Computation of Language, An Essay on Syntax, Se-

mantics, and Pragmatics in Natural Man-Machine Communication, Symbolic

Computation: Artificial Intelligence, pp. 425, Springer

Earley, J. (1970) “An Efficient Context-Free Parsing Algorithm,” Commun. ACM,

Vol. 13.2:94–102

FoCL = Hausser, R. (1999) Foundations of Computational Linguistics, Human-

Computer Communication in Natural Language, 3rd ed. 2014, Springer

Garey, M.R., and D.S. Johnson (1979) Computers and Intractability: A Guide to

the Theory of NP-Completeness, San Francisco: W. H. Freeman

Ginsburg, S. (1980) “Formal Language Theory: Methods for Specifying Formal

Languages – Past, Present, Future,” in R.V. Book (ed.), 1–22

Greibach, S. (1973) “The hardest context-free language,” SIAM J. Comput. Vol.

2:304–310

Harrison, M. (1978) Introduction to Formal Language Theory, pp. 608, Reading,

Mass.: Addison-Wesley

Hopcroft, J.E., and Ullman, J.D. (1979) Introduction to Automata Theory, Lan-

guages, and Computation, Reading, Mass.: Addison-Wesley

Knuth, D.E., J.H. Morris, and V.R. Pratt (1977) “Fast Pattern Matching in Strings,”

SIAM J. Comput. Vol. 6.2:323–350

Levelt, W.J.M. (1981) “The speaker’s linearization problem,” Transactions of the

Royal Society, 295.1077:305-315

Peters, S., and R. Ritchie (1973) “On the Generative Power of Transformational

Grammar,” Information and Control, Elsevier, Vol. 18:483–501

Stubert, B. (1993) “Einordnung der Familie der C-Sprachen zwischen die kon-

textfreien und die kontextsensitiven Sprachen,” CLUE-betreute Studienarbeit der

Informatik, Friedrich Alexander Universität Erlangen Nürnberg

TCS’92 = Hausser, R. (1992) “Complexity in left-associative grammar,” Theoret-

ical Computer Science, Vol. 106.2:283–308, Elsevier

18

	 Degrees of Computational Complexity
	Basic Degrees of Complexity
	Timing of polynomial vs. exponential algorithms

	 The Orthogonal LAG and PSG Complexity Hierarchies
	Orthogonal relation between C and cf languages

	 Comparing Explicitly Defined Examples in PSG and DBS
	Explicit PSGs for the formal languages anbn and anbncn
	Explicit LAGs for anbn and anbncn
	Explicit PSG for WWr and informal for WW
	Explicit LAGs for WWr and WW
	Explicit PSG and LAG for Lno
	Complexity degrees of the LAG and PSG hierarchies

	 Sub-Hierarchy of C1, C2, and C3 LAGs
	The Single Return Principle (SRP)
	Derivation structure of the worst case in WWR

	 Applying LAG to Natural Language
	Time-linear LAG analysis of an English sentence
	Annotated transition network of the LAG for anbncn
	Annotated transition network for LA E3

	 From LAG to the DBS Hear Mode
	Connecting a sentence start to its successor
	Storing sentence-initial word at empty now front
	Storing next word at now front
	Absorbing dog into the with DETCN
	Storing next word at current now front
	Cross-copying dog and bark with SBJPRD

	 From the DBS Hear Mode to the DBS Speak Mode
	Navigating with V-N from bark to dog
	Navigating with NV from dog back to bark

	 Incremental Lexical Lookup in the DBS Hear mode
	Owner-based storage of language proplet at now front

	 Ambiguity in Natural Language
	Ambiguity structure of an unbounded suspension

	 Language Dependence of Grammatical Disambiguation
	The Bach-Peters Sentence
	 Conclusion
	Bibliography

