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7. Generative grammar

7.1 Language as a subset of the free monoid

7.1.1 Definition of language
A language is a set of word sequences.
7.1.2 lllustration of the free monoids over LX = {a,b}

g

a, b

aa, ab, ba, bb

aaa, aab, aba, abb, baa, bab, bba, bbb

aaaa, aaab, aaba, aabb, abaa, abab, abba, abbb, ...

7.1.3 Informal description of the artificial languagea®b® (with k > 1)

Its wellformed expressions consist of an arbitrary number of the \adiallowed by an equal number of the
word b.

CF LAE (©1999 Roland Hausser



FoCL, Chapter 7: Generative grammar 102

7.1.4 Wellformed expressions o<b*
ab,aabb,aaabbb,aaaabbbb,etc,
7.1.5 lliformed expressions o&*b*
a,b,ba,bbaa,abab,etc,

7.1.6 PS-grammar fora®b*

S—aShb
S—ab

A formal grammar may be viewed as a filter which selects the wellformed expressions of its language from
free monoid over the language’s lexicon.

7.1.7 Elementary formalisms of generative grammar

1. Categorial or C-grammar
2. Phrase-structure or PS-grammar
3. Left-associative or LA-grammar
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7.1.8 Algebraic definition

The algebraic definition of a generative grammar explicitly enumerates the basic components of the sys
tem, defining them and the structural relations between them using only notions of set theory.

7.1.9 Derived formalisms of PS-grammar

Syntactic Structures, Generative Semantics, Standard Theory (ST), Extended Standard Theory (EST), R
vised Extended Standard Theory (REST), Government and Binding (GB), Barriers, Generalized Phras
Structure Grammar (GPSG), Lexical Functional Grammar (LFG), Head-driven Phrase Structure Gram:-
mar (HPSG)

7.1.10 Derived formalisms of C-grammar

Montague grammar (MG), Functional Unification Grammar (FUG), Categorial Unification Grammar
(CUG), Combinatory Categorial Grammar (CCG), Unification-based Categorial Grammar (UCG)
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7.1.11 Examples of semi-formal grammars

Dependency grammar (Tesniere 1959), systemic grammar (Halliday 1985), stratification grammar (Lamb ?
7.2 Methodological reasons for generative grammar

7.2.1 Grammatically well-formed expression
the little dogs have slept earlier
7.2.2 Grammatically ill-formed expression

* earlier slept have dogs little the
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7.2.3 Methodological consequences of generative grammar

e Empirical formation of explicit hypotheses

A formal rule system constitutes an explicit hypothesis about which input expressions are well-formed .
which are not. This is an essential precondition for incremental improvements of the empirical descriptic

e Mathematical determining formal properties

A formal rule system is required for determining mathematical properties such as decidability, complex
and generative capacity. These in turn determine whether the formalism is suitable for empirical descrig
and computational realization.

e Computational declarative specification for parsers

A formal rule system may be used as a declarative specification of the parser, characterizing its nece:
properties in contrast to accidental properties stemming from the choice of the programming environm
etc. A parser in turn provides the automatic language analysis needed for the verification of the indivic
grammars.
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7.3 Adequacy of generative grammars

7.3.1 Desiderata of generative grammar for natural language

The generative analysis of natural language should be simultaneously

e definedmathematicallyas a formal theory of low complexity,
e designedunctionallyas a component of natural communication, and

e realizedmethodologicallyas an efficiently implemented computer program in which the properties of forme
language theory and of natural language analysis are represented in a modular and transparent mannel
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7.4 Formalism of C-grammar

7.4.1 The historically first generative grammar

Categorial grammar or C-grammar was invented by the Polish logiciagsIlEwsK11929 and ADUKIEWICZ
1935 in order to avoid the Russell paradox in formal language analysis. C-grammar was first applied to na
language by BR-HILLEL 1953.

7.4.2 Structure of a logical function

1. function name: 2. domain — 3. range

T

4. assignment
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7.4.3 Algebraic definition of C-grammar

A C-grammar is a quintuplez W, C, LX, R, CE>.

1. Wis a finite set of word form surfaces.
2. Cis a set of categories such that
(a) basis
u and ve C,
(b) induction
if Xand Y € C, then also (XY) and (X\Y) € C,
(c) closure
Nothing is in C except as specified in (a) and (b).
3. LX s afinite set such that LXC (W x C).
4. Ris a set comprising the following two rule schemata:
a(y/x) © Bry)y = abx)
Bry) o av\x) = Box)
5. CE is a set comprising the categoriesomplete expressionwith CE C C.
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7.4.4 Recursive definition of the infinite set C

Because the start elements u and v are in C so ghe)(¢v/u), (u\v), and (Wu) according to the induction
clause. This means in turn that also(@/v), ((u/v)\u), (u/(u/v)), (v/(u/v)), etc., belong to C.

7.4.5 Definition of LX as finite set of ordered pairs

Each ordered pair is built from (i) an element of W and (ii) an element of C. Which surfaces (i.e. elements of
take which elements of C as their categories is specified in LX by explicitly listing the ordered pairs.

7.4.6 Definition of the set of rule schemata R

The rule schemata use the variableand 3 to represent the surfaces of the functor and the argument, respe
tively, and the variables X and Y to represent their category patterns.

7.4.7 Definition of the set of complete expressions CE

Depending on the specific C-grammar and the specific language, this set may be finite and specified in terr
an explicit listing, or it may be infinite and characterized by patterns containing variables.
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7.4.8 Implicit pattern matching in combinations of bidirectional C-grammar

functor word  argument word result of composition

a o b —> ab

(u/v|) (u) (V)

result category

argument category

argument word  functor word result of composition

—> ba

a
(u) (u\v|) (v)

result category

argument category

e ¥ =

(©1999 Roland Hausser



FoCL, Chapter 7: Generative grammar

111

7.4.9 C-grammar for a®b*

LX =def {8cu/v)s Buys 8 /(u/v))}
CE —def {(V)}

The worda has two lexical definitions with the categoriegWand (v/(u/v)), respectively, for reasons apparent

in the following derivation tree.

7.4.10 Example ofa*b* derivation, for k = 3

aaabbb
V)

u/v)
\aabRO
Qu/v)
(v

(vd(u/v)) (vd(u/v))

b b

)
HOREORI®

e ¥ =
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7.5 C-grammar for natural language

7.5.1 C-grammar for a tiny fragment of English

LX =der {W (e) U W(e\t)}; where
W(e) = {Julia, Peter, Mary, Fritz, Suzy ...}
We\t) = {sleeps, laughs, sings ...}

CE =47 {(}

7.5.2 Simultaneous syntactic and semantic analysis

Julia sleeps

A(t)

Julia sleeps

(€) - (e\Y

Denotations (in the model M): eniity {set of entities}

e ¥ =
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7.5.3 C-analysis of a natural language sentence

The small black dogs sleep

(1)

the small black dogs

(e)

small black dogs
(e/t)

black dogs
(e/t)

the small black dogs sleep

((elt)le) (el)/(el) ((el)/(elD) (elt) (e\t)
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7.5.4 C-grammar for example 7.5.3

LXZdef {W (&) U Wieve) U Wiesey U Wices) /(e/0)) U Wicesn v 1, Where
Wy ={Julia, Peter, Mary, Fritz, Suzy ...}
We\t) = {sleeps, laughs, sings ...}
W) = {dog, dogs, cat, cats, table, tables ...}
W((e/t)/(e/t)) = {Small, black . . }
We/t) 1) ={a, the, every ...}
CE =4cz {(1)}

7.5.5 Empirical disadvantages of C-grammar for natural language

e Deriving expressions relative to a C-grammar has the character of problem solving.

e The handling of alternative word orders and agreement phenomena requires an extremely high degr
lexical ambiguities.
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8. Language hierarchies and complexity

8.1 Formalism of PS-grammar
8.1.1 Original definition

Published in 1936 by the American logician E. Postr&srite or Post production system# originated in
recursion theory and is closely related to automata theory.

8.1.2 First application to natural language

Post’s rewrite systems were first applied to natural language by N. Chomsky 1957 under the mdmrasef
structure grammar

8.1.3 Algebraic definition of PS-Grammar

A PS-grammar is a quadrupte V, Vr, S, P> such that

V is a finite set of signs,

V' is a proper subset of V, calledrminal symbols

SisasigninV minus Y, calledstart symbol and

P is a set of rewrite rules of the formn — 3, wherea is an element of V and3 an element of V.

R
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8.1.4 Restrictions of PS-rule schemata

0. Unrestricted PS-rules:

The left hand side and the right hand side of a type O rule each consist of arbitrary sequences of termina
nonterminal symbols.

1. Context-sensitive PS-rules:
The left hand side and the right hand side of a type 1 rule each consist of arbitrary sequences of termina
nonterminal symbols whereby the right hand side must be at least as long as the left hand side.
Example: ABC— ADEC

2. Context-free PS-rules:

The left hand side of a type 2 rule consists of exactly one variable. The right hand side of the rule consist
a sequence from V.

Examples: A~ BC, A — bBCec, etc.
3. Regular PS-rules:

The left hand side of a type 3 rule consists of exactly one variable. The right hand side consists of exe
one terminal symbol and at most one variable.

Examples: A~ b, A — bC.
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8.2 Language classes and computational complexity

8.2.1 Different restrictions on a generative rule schema result in

differenttypes of grammawhich have
differentdegrees of generative capacégnd generate
differentlanguage classeshich in turn exhibit
differentdegrees of computational complexity

8.2.2 Basic degrees of complexity

1. Linear complexity
n, 2n, 3n, etc.

2. Polynomial complexity
n?, n°, n*, etc.

3. Exponential complexity
2", 3", 4", etc.

4. Undecidable

n-oo

e ¥ =
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8.2.3 Polynomial vs. exponential complexity (M.R.Garey & D.S. Johnson 1979)

problem size n
time
complexity 10 50 100
5 .001 125 1.0
n seconds | seconds seconds
.001 35.7 1015
I .
2 seconds years centuries

8.2.4 Application to natural language

The Limas corpus comprises a total of 71 148 sentences. Of these, there are exactly 50 which consist o
word forms or more, whereby the longest sentence in the whole corpus consists of 165 words.
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8.2.5 PS-grammar hierarchy of formal languages (Chomsky hierarchy)

restrrlijcfions Pstygrzziar language classes degree of complexity
type 3 regular PSG regular languages linear
type 2 context-free PSG context-free languages polynominal
type 1 context-sensitive PSG context-sensitive lang. exponential
type O unrestricted PSG rec. enum. languages undecidable
CF LA (©1999 Roland Hausser
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8.3 Generative capacity and formal language classes

8.3.1 Essential linguistic question regarding PS-grammar

Is there is a type of PS-grammar which generates exactly those structures which are characteristic of ne
language?

8.3.2 Structural properties of regular PS-grammars

The generative capacity of regular grammar permits the recursive repetition of single words, but without
recursive correspondences.

8.3.3 Regular PS-grammar forab® (k > 1)

V :def {Sl 81 a1 b}

VT:def{a’ b}

P:def{S—>aB,
B — b B,
B—Db}
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8.3.4 Regular PS-grammar for &, b}

V =4e {S, a, b}

VT —def {a1 b}

P:def {S —as,
S—DbS,
S— a,
S— b}

8.3.5 Regular PS-grammar fora™b* (k,m > 1)

V :def {81 811 821 as b}

VT —def {a1 b}

P=s{S—as3,
Sl — aSh
Sl — b%,
S; — b}
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8.3.6 Structural properties of context-free PS-grammars

The generative capacity of context-free grammar permits the recursive generation of pairwise inverse corre:
dences,e.g.abc..cba.
8.3.7 Context-free PS-grammar fora®b3*
V =4er {S, a, b}
VT =4er {a, b}
P:def{S—>aSbbb,

S— abbb}

8.3.8 Context-free PS-grammar folWWH

V:def {S, a, b, C, d}, V1 =def {a, b, C, d}, P:def{S —aSa,
S—bSh,
S—»cSc,
S—dSd,
S— aa,
S—bb,
S—cc,
S—dd}
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8.3.9 Why WW exceeds the generative capacity of context-free PS-grammar

aa
abab
abcabc
abcdabcd

do not have a reverse structure. Thus, despite the close resemblance MWEemdWW, it is simply
impossible to write a PS-grammar like 8.3.8 YoWV.

8.3.10 Whya*b¥ck exceeds the generative capacity of context-free PS-grammar

abc
aabbcc
aaabbbccc

cannot be generated by a context-free PS-grammar because it requires a correspondence between th
different parts — which exceeds tpairwisereverse structure of the context-free languages such as the
familiar a®b* andww?.
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8.3.11 Structural properties of context-sensitive PS-grammars

Almost any language one can think of is context-sensitive; the only known proofs that certain languages
are not CSL’s are ultimately based on diagonalization.

J.E. Hopcroft and J.D. Ullman 1979, p. 224

8.3.12 PS-grammar for context-sensitiva*b*ck

V :def {81 81 C1 D]_1 D21 a1 b1 C}
VT :def {a1 b1 C}

P=.r{S—aSBC, rule 1
S—abC_C, rule 2
CB — D; B, rule 3a
D; B — D Dy, rule 3b
D; Dy — B Do, rule 3c
BDy; — BC, rule 3d
bB— bb, rule 4
bC— bc, rule 5
cC—cc} rule 6
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The rules 3a—3d jointly have the same effect as the (monotonic)

rule 3 CB—BC.

8.3.13 Derivationofaaabbbccc

intermediate chains rules
1. S
2. aSBC (1)
3. aasSBCBC (1)
4, aaabCBCBLC (2)
5. aaabBCCBLC (3)
6. aaabBCBCLC (3)
7. aaabBBCCLC (3)
8. aaabbBCCZC (4)
9. aaabbbcCCZC (4)
10. aaabbbcCC (5)
11. aaabbbccC (6)
12. aaabbbcecec (6)
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8.3.14 Structural properties of recursive languages

The context-sensitive languages are a proper subset of the recursive languages. The class of recursi
languages is not reflected in the PS-grammar hierarchy because the PS-rule schema provides no suital
restriction (cf. 8.1.4) such that the associated PS-grammar class would generate exactly the recursi\
languages.

A language is recursive if and only if it is decidable, i.e., if there exists an algorithm which can determine

in finitely many steps for arbitrary input whether or not the input belongs to the language. An example of

a recursive language which is not context-sensitive is the Ackermann function.

8.3.15 Structural properties of unrestricted PS-grammars

Because the right hand side of a rule may be shorter than the left hand side, a type O rules provides fo

possibility ofdeletingparts of sequences already generated. For this reason, the class of recursively enume
languages is undecidable.
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8.4 PS-Grammar for natural language

8.4.1 PS-grammar for example 7.5.4

V =4+ {S, NP, VP, V, N, DET, ADJblack, dogs, little, sleep, the}
VT =4e¢ { black, dogs, little, sleep, the}
P :def{ S —- NP VP,

VP =V,

NP — DET N,

N — ADJ N,

N — dogs,

ADJ — little,

ADJ — black,

DET — the,

V — sleep}

e ¥ =
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8.4.2 PS-grammar analysis of example 7.5.4

ADJ \|/

the smaII black dogs sleep

8.4.3 Definition of constituent structure

1. Words or constituents which belong together semantically must be dominated directly and exhaustively
node.

2. The lines of a constituent structure may not cross{angling condition
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8.4.4 Correct constituent structure analysis

S
/ \
DET/ \ DET
trle m|an read a bo|ok

8.4.5 Incorrect constituent structure analysis

S
/ >
/ NP\
DI|ET ITI \|/ DET \N
the man read a book

e ¥ =
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8.4.6 Origin of constituent structure

Historically, the notion of constituent structure evolved fromithenediate constituent analys$the American
structuralist L. BoOMFIELD (1887-1949) and the distribution tests of his student Z. Harris.

8.4.7 Immediate constituents in PS-grammar:

correct: incorrect:
ADJ

ADJ

gentle man gentle man
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8.4.8 Substitution test

correct substitution: incorrect substitution:

Suzanne has [eaten] an apple Suzanne has [eaten] an apple
J Y

Suzanne has [cooked] an apple * Suzanne has [desk] an apple

8.4.9 Movement test

correct movement:

Suzanne [has] eaten an apple — [has] Suzanne eaten an apple (?)

incorrect movement:

Suzanne has eaten [an] apple — * [an] Suzanne has eaten apple
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8.4.10 Purpose of constituent structure

The distribution tests seemed important methodologically in order to support intuitions abooitrdet segmen-
tation of sentences. The distinction between linguistically correct and incorrect phrase structures trees set
necessary because for any finite string the number of possible phrase structures is infinite.

8.4.11 Infinite number of trees over a single word

Context-freerules: S+ S, S— A

Indexed bracketing: (A), ((A)s)s, (((A)s)s)s, ((A)s)s)s)s, etc.
Corresponding trees:

A S S
o

A S
|

A
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8.5 Constituent structure paradox

8.5.1 Constituent structure from the viewpoint of theSLIM theory of language

e Constituent structure and the distribution tests claimed to support it run counter to the time-linear struc
of natural language.

e The resulting phrase structure trees have no communicative purpose.
e The principles of constituent structure cannot always be fulfilled.

8.5.2 Violating the second condition of 8.4.3
S

VP

VP

N

AN

NP V DET N DE

Peter looked the word up
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8.5.3 Violating the first condition of 8.4.3

DE/ \ DE

Peter loo ed the Word up

8.5.4 Assumptions of transformational grammar

In order to maintain constituent structure as innate, transformational grammar distinguishes between a hypc
ical deep structures claimed to be universal and the concrete language dependent surface structure.

e Thereby the two levels are assumed to be semantically equivalent,
e deep structures need not be grammatical, but must obey constituent structure, and
e surface structures must be grammatical, but need not obey constituent structure.
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8.5.5 Example of a formal transformation

[[V DE]+~ [DET N]xplvp = [V [DET N]xp DE]yp

8.5.6 Applying transformation 8.5.3

deep structure: surface structure:

S S

V. v NP
/ \ NP
NP \Y D|E
Peter looked up it = Peter looked it

8.5.7 Mathematical consequences of adding transformations to PS-grammar

VP :
/ \ transformation / \
NP

While the context-free deep structure is of low polynomial complexit$) (adding transformations raises com-
plexity to recursively enumerable. In other words, transformational grammar is undecidable.

e ¥ =
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8.5.8 Example of a Bach-Peters-sentence

The man who deserves it will get the prize he wants.

8.5.9 Deep structure of a Bach-Peters-sentence

[The man] will get
[the man deserves [the prize]]
[[the man] wants the prize]

[the man deserves [the prize]]

[[the man] wants the prize]

[the prize]

[[the man] wants the prize]

[the man deserves [the prize]]

[[the man] wants the prize]

[the man deserves [the prize]]

e ¥ =
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9. Basic notions of parsing

9.1 Declarative and procedural aspects of parsing

9.1.1 Declarative & procedural aspects in linguistics

e Thedeclarativeaspect of computational language analysis is represented by a generative grammar, wr
for the specific language to be analyzed within a general, mathematically well-defined formalism.

e The proceduralaspect of computational language analysis comprises those parts of the computer prog
which interpret and apply the general formalism in the automatic analysis of language input.

9.1.2 Example

ruel: A—- BC
rue2: B—cd
rule3;: C— ef
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9.2 Fitting grammar onto language

9.2.1 Context-free structure in German

Der Mann, schlaft.
(the ma) (sleeps.
der die Frau, liebt,
(who the womahn (loves
die das Kind, sieht,
(who the child (see$

das die Katze fittert,
(whothecat (feed$

9.2.2 Alternative implications of natural language not being context-free

1. PS-grammar is the only elementary formalism of generative grammar, for which reason one must accep
the natural languages are of high complexity and thus computationally intractable.

2. PS-grammar is not the only elementary formalism of generative grammar. Instead, there are other eleme

formalisms which define other language hierarchies whose language classes are orthogonal to those ¢
grammar.
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9.2.3 Possible relations between two grammar formalisms

e No equivalence
Two grammar formalisms are not equivalent, if they generate/recognize different language classes; this i
that the two formalisms are of different generative capacity.

e \Weak equivalence
Two grammar formalisms are weakly equivalent, if they generate/recognize the same language classes
means that the two formalisms have the same generative capacity.

e Strong equivalence
Two grammar formalisms are strongly equivalent, if they are (i) weakly equivalent, and moreover (ii) prodt
the same structural descriptions; this means that the two formalisms are no monetduzonal variants

9.2.4 Weak equivalence between C-grammar and PS-grammar

The problem arose of determining the exact relationships between these types of [PS-]grammars and the categorial gramma
| surmised in 1958 that the BCGs [Bidirectional Categorial Graménk 7.4.1] were of approximately the same strength

as [context-free phrase structure grammars]. A proof of their equivalence was found in June of 1959 by Gaifman. ... The
equivalence of these different types of grammars should not be too surprising. Each of them was meant to be a precis
explicatum of the notiommmediate constituent grammansghich has served for many years as the favorite type of American
descriptive linguistics as exhibited, for instance, in the well-known books by Harris [1951] and Hockett [1958].

Y. Bar-Hillel 1960 [1964, p. 103]
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9.2.5 General relations between notions of generative grammar

e Languagesxist independently of generative grammars. A given language may be described by differ
formal grammars of different grammar formalisms.

e Generative grammaiis (i) a general formal framework or (ii) a specific rule system defined for describing
specific language within the general framework.

e Subtypes of generative grammagesult from different restrictions on the formal framework.

e Language classes
The subtypes of a generative grammar may be used to divide the set of possible languages into diff
language classes.
Nota benelanguagesxist independently of the formal grammars which may generate themainpeage classe®n the other
hand, do not exist independently, but result from particular restrictions on particular grammar formalisms.

e Parsers
Parsers are programs of automatic language analysis which are defined for whole subtypes of gene
grammars.

e Complexity
The complexity of a subtype of generative grammar is determined over the numfr@mdaive operations
needed by an equivalent abstract automaton or parsing program for analyzing expressions in the worst
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9.3 Type transparency between grammar and parser

9.3.1 Natural view of a parser as the motor or driver of a grammar

Miller and Chomsky'’s original (1963) suggestion is really that grammars be realized more or less directly
as parsing algorithms. We might take this as a methodological principle. In this case we impose the
condition that the logical organization of rules and structures incorporated in the grammar be mirrored
rather exactly in the organization of the parsing mechanism. We will caltypestransparency

R.C. Berwick & A.S. Weinberg 1984, p. 39.

9.3.2 Definition of absolute type transparency

e For any given language, parser and generator ussdaimeformal grammatr,

e Wwhereby the parser/generator applies the rules of the grautneatly.

e This means in particular that the parser/generator applies the rules saithe orderas the grammatical
derivation,

e thatin each rule application the parser/generator takesdaime inpuexpressions as the grammar, and
e thatin each rule application the parser/generator producesathe outpuéxpressions as the grammar.
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9.3.3Top-dowrderivationofaaabbb

/S\ S——=aShb step 1
a S b
S S——=aShb step 2
S

S S——=ab step 3
S
S
N
a a a b b b
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9.3.4Bottom-upderivationofaaabbb

S S<—asShb
S
S

a a a b b b
S S<—asShb
S

a a a b b b
S S<—ab

N
a a a b b b

step 3

step 2

step 1

e ¥ =
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9.3.5 The Earley algorithm analyzinga®b®

.aaabbb

S
| a.aabbb
|
.ab -> ab
.aSb -> a.Sb
| aa.abbb
|
a.abb -> aa.bb
a.aShb -> aa.Shb
| aaa.bbb aaab.bb
|
aa.abbb -> aaa.bbb -> aaab.bb-> ...
aa.aSbbb -> aaa.Sbhb
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9.4 Input-output equivalence with the speaker-hearer

9.4.1 Context-free PS-grammar for a simple sentence of English

1. S — NPVP 5.V —read
2. NP — DETN 6. DET— a
3. VP — VNP 7. N — book
4. NP — Julia

9.4.2 PS-grammar analysistop-downderivation)

/\
\/\

Julia V
4 \
read DET
o
a book
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9.4.3 Attempt of a time-linear analysis in PS-grammar

1 2
Julia read
‘ 2 3
NP V read a
3 4
?
V DET a book
2
DET N
V /NP
NP VP

e ¥ =
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9.5 Desiderata of grammar for achieving convergence

9.5.1 Symptons of lacking convergence in nativism

e Development of ever new derived systems instead of consolidation.

e Additional mechanisms regarded as descriptively necessary have consistently degraded mathematice
computational properties.

e Empirical work has lead continuously to problems of the type descriptive aporia and embarrassment of ric

e Practical systems of natural language processing pay either only lip service to the theoretical construc
nativism or ignore them altogether.

9.5.2 Reasons for lacking convergence of nativism

e Nativism is empirically underspecified because it does not include a functional theory of communication

e The PS-grammar formalism adopted by nativism is incompatible with the input-output conditions of t
speaker-hearer.
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9.5.3 Properties of PS-grammar

e Mathematical:
Practical parsing algorithms exist only for context-free PS-grammar. It is of a sufficiently low complexi
(n®), but not of sufficient generative capacity for natural language. Extensions of the generative capa
for the purpose of describing natural language turned out to be of such high complexity (undecidabile
exponential) that no practical parse algorithm can exist for them.

e Computational:
PS-grammar is not type transparent. This prevents using the automatic traces of parsers for purpos
debugging and upscaling grammars. Furthermore, the indirect relation between the grammar and the pe
algorithm requires the use of costly routines and large intermediate structures.

e Empirical:
The substitution-based derivation order of PS-grammar is incompatible with the time-linear structure of 1
ural language.
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9.5.4 Desiderata of a generative grammar formalism

The grammar formalism should be mathematically well-defined and thus
permit an explicit, declarative description of artificial and natural languages.
The formalism should be recursive (and thus decidable) as well as

type transparent with respect to its parsers and generators.

The formalism should define a hierarchy of different language classes in terms of structurally obvious res
tions on its rule system (analogous — but orthogonal — to the PS-grammar hierarchy),

6. whereby the hierarchy contains a language class of low, preferably linear, complexity the generative cap
of which is sufficient for a complete description of natural language.

7. The formalism should be input-output equivalent with the speaker-hearer (and thus use a time-linear de
tion order).

8. The formalism should be suited equally well for production (in the sense of mapping meanings into surfa
and interpretation (in the sense of mapping surfaces into meanings).

o~ wDdhPe
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10. Left-associative grammar (LAG)

10.1 Rule types and derivation order

10.1.1 The notionleft-associative

When we combine operators to form expressions, the order in which the operators are to be applied ma
not be obvious. For exampla,+ b + c can be interpreted 4& + b) + c) or as(a + (b + ¢)). We say that

+ is left-associativef operands are grouped left to right ag(a + b) + ¢). We say it isright-associative

if it groups operands in the opposite direction, agar+ (b + ¢)).

A.V. Aho & J.D. Ullman 1977, p. 47

10.1.2 Incremental left- and right-associative derivation

left-associative: right-associative:
a a
(a + b) (b + a)
(@ + b) + c) c+ (b + &)
(((a + b) + c) + d) d+ (c + (b + &)
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10.1.3 Left-associative derivation order

Derivation is based on the principle of possibtatinuations
Used to model the time-linear structure of language

10.1.4 Irregular bracketing structures corresponding to the trees of C- and PS-grammar

(@ + b) + (c +d)) + e
(@ + b) + ((c +d)) + e
@+ (b +c)+d+e)
(@ + (b +c)+ (d+e)
(@ + b) + ¢) + (d +e))

The number of these irregular bracketings grows exponentially with the length of the string and is infinite
bracketings like (a), ((a)), (((a))), etc., are permitted.

10.1.5 Irregular bracketing structure

Derivation is based on the principle of possibigstitutions
Used to model constituent structure
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10.1.6 The principle of possible continuations

Beginning with the first word of the sentence, the grammar describes the possible continuations for eacl
sentence start by specifying the rules which may perform the next grammatical composition (i.e., add the
next word).

10.1.7 Schema of left-associative rule in LA-grammar
r;: caf cag = cag rp;

10.1.8 Schema of a canceling rule in C-grammar
ay|x) © Bry) = afx)

10.1.9 Schema of a rewrite rule in PS-grammar

A—-BC
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10.1.10 Three conceptual derivation orders

LA-grammar C-grammar PS-grammar
/N
N /N N
/N SN SN SN
N N 7N
bot.-up left-associative bottom-up amalgamating top-down expanding
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10.2 Formalism of LA-grammar

10.2.1 Algebraic definition of LA-grammar

A left-associative grammar (or LA-grammar) is defined as a 7-tapdlé C, LX, CO, RP, S, STr >, where

W is a finite set ofvord surfaces
C is a finite set otategory segments
LX C (W x C*)is a finite set comprising thiexicon

CO =(c@ ... co,_) is a finite sequence of total recursive functions from ¢CC™") into C* U { L}, called
categorial operations

RP =(rp ... rp,_1) is an equally long sequence of subsets of n, calldéel packages

STs ={(cat, rps), ...} is a finite set ofnitial states whereby each rps a subset of n called start rule package
and each cate C™.

7. STr ={(cats rpy), ...} is a finite set ofinal stateswhereby each cate C* and each rp e RP.

A

Y
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10.2.2 A concrete LA-grammar is specified by

a lexicon LX (cf. 3),
a set of initial states ST{(cf. 6),

a sequence of ruleg each defined as an ordered pair;(e¢p;), and
a set of final states ST

A

10.2.3 LA-grammar for ab*

LX =q4cr {[a (@)], [b (b)]}
STs =des {[(@) { r1, r2}]}
r:(X) (@ = (@Xx) {ry,r}
ra: (@X) (b) = (X) {r2}
STr =aes {[ € rp2]}-

e ¥ =
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10.2.4 LA-grammar for a®b*ck

LX =4er {[a ()], [b (b)], [c (c)]}
STs =gey {[(@) { r1, r2}]}

ri: (X) (@ = (aX) {ry,r}
r2: (aX) (b) = (Xb) {ry,r3}
r3: (bX) (¢) = (X) {rs3}
STr =gey {[ € rps]}-

10.2.5 The finite state backbone of the LA-grammar fora*b*c*

o

s
@”ﬁg}
S99

rs
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10.2.6 Recursion of left-associative algorithm

STATES

[rps cat-1]

[rp; cat-1]

[rp; cat-1']

[rp;. cat-1"]

APPLICATION NW-INTAKE

— [rp; (cat-1' cat-2)] ~——

[rp; (cat-1 cat-2)]

[rps (cat-1 cat-2)]

APPLICATION SETS
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10.3 Time-linear analysis

10.3.1 LA-trees as structured lists

0 ABCD (i)  ABCD (i) (A
/ \ © B)
ABC D ABC) (AB
/ \ c o
AB C AB) (ABC
/ \ ® D)
A B A) ABCD
rr e
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10.3.2 LA-grammar derivation of a“b* for k =3

NEWCAT> aaabbb
*START-0
1
(A) A
(A) A
*RULE-1
2
(A A) A A
(A) A
*RULE-1
3
(AAAAAA
(B) B
*RULE-2
4
(AA)AAAB
(B) B
*RULE-2
5
(A) AAABB
(B) B
*RULE-2
6
(NIL) AAABBRB
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10.3.3 Interpretation of a history section

active rule package: *START-0
composition number: 1

sentence start: (A) A

next word: (A) A
successful rule: *RULE-1

next composition number: 2

result: (A A AA

10.3.4 Overlap between history sections

active rule package: *RULE-1
composition number: 2

sentence start : (A A AA

next word: (A) A
successful rule : *RULE-1

next composition number: 3

result: (A AA AAA
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10.4 Absolute type transparency of LA-grammar

10.4.1 Parsingaaabbbccc with active rule counter

NEWCAT> aaabbbccec
;1. Applying rules (RULE-1 RULE-2) (AAB)AAAB
;2. Applying rules (RULE-1 RULE-2) (B) B
3: Applying rules (RULE-1 RULE-2) *RULE-2
;4. Applying rules (RULE-2 RULE-3) 5
;5. Applying rules (RULE-2 RULE-3) (ABB)AAABB
; 6: Applying rules (RULE-2 RULE-3) (B) B
; 7: Applying rules (RULE-3) *RULE-2
;8. Applying rules (RULE-3) 6
; Number of rule applications: 14. (BBB)AAABBSB
(C C
*START-0 *RULE-3
1 7
(A) A (CC)AAABBBC
(A) A © C
*RULE-1 *RULE-3
2 8
(A A AA (© AAABBBCC
(A) A © C
*RULE-1 *RULE-3
3 9
(AAA AAA (NIL) AAABBBCCC
(B) B
*RULE-2
4
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10.4.2 Generating a representative sample ia

NEWCAT> (gram-gen 3 ’(a b c))

Parses of length 2:
A B

(B)

2
A A
1 (A A

Parses of length 3:

1122 (ABB)
AAAAB

1112 (AAAB)
Parses of length 6:

A ABBCZC
12233 (NIL)

A AABBB
11222 (BBB)
A AAABB
11122 (AABB)

A AABBBZC
Parses of length 4: 112223 (B B)
A ABB AAAABBB
122 (B B) 111222 (ABBB)
A AAB
112 (A A B) Parses of length 8:
AAAA AAABBBCZC
111 (AAAA 1122233 (O
A AAABBBB
Parses of length 5: 1112222 (B B B B)
A ABBZC
1223 (B Parses of length 9:
A AABB A AABBBCCZC
Y LAE
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11222333 (NL
AAAABBBBC
11122223 (BB B)

Parses of length 10:
AAAABBBBCZC
111222233 (BB
Parses of length 11:
AAAABBBBCCC
1112222333 (B
Parses of length 12:
AAAABBBBCCCC
11122223333

10.4.3 Complete well-formed expression iab*ck

AAABBBCCC
11222333 (NL
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10.5 LA-grammar for natural language

10.5.1 Constituent structure analysis in C-grammar

Mary gives Fido a bone

(V)

gives Fido a bone

(S3 V)
ives Fido a bone
S3AYV) (SNP)
Mary gives Fido a bone

(SNP) (S3DAV) (SNP) (SN SNP)(SN)

e ¥ =
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10.5.2 Time-linear analysis in LA-grammar

Mary gives Fido a bone

(V)
Mary gives Fido a
SN V)
Mary gives Fido
(A V)
Mary gives
(DAYV)
Mary ives Fido a bone
(SNP) S3DAYV) (SNP) (SN SNP) (SN)
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10.5.3 Categorial operation combiningMary and gives

(SNP)(NDAV)= (DAV)

10.5.4 Categorial operation combiningMary gives and Fido
(DAV) (SNP)= (A V)

10.5.5 Categorial operation combiningMary gives Fido and a
(AV) (SN SNP)= (SN V)

10.5.6 Categorial operation combiningVary gives Fido a and book

(SN V) (SN)= (V)
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10.5.7 Left-associative parsing of example 10.5.2

NEWCAT> Mary gives Fido a bone \.

*START
1
(SNP) MARY
(S3 D A V) GIVES
*NOM+FVERB
2
(D A V) MARY GIVES
(SNP) FIDO
*FVERB+MAIN
3
(A V) MARY GIVES FIDO
(SN SNP) A
*FVERB+MAIN
4
(SN V) MARY GIVES FIDO A
(SN) BONE
*DET+NOUN
5
(V) MARY GIVES FIDO A BONE
(V DECL) .
*CMPLT
6

(DECL) MARY GIVES FIDO A BONE .

e ¥ =
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10.5.8 Analysis of a discontinuous element

NEWCAT> Fido dug the bone up \.

*START
1
(SNP) FIDO
(N A UP V) DUG
*NOM+FVERB
2
(A UP V) FIDO DUG
(SN SNP) THE
*FVERB+MAIN
3
(SN UP V) FIDO DUG THE
(SN) BONE
*DET+NOUN
4
(UP V) FIDO DUG THE BONE
(UP) UP
*FVERB+MAIN
5
(V) FIDO DUG THE BONE UP
(V DECL) .
*CMPLT
6

(DECL) FIDO DUG THE BONE UP .

e ¥ =
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10.5.9 LA-analysis of ungrammatical input

NEWCAT> the young girl give Fido the bone \.

ERROR

Ungrammatical continuation at: "GIVE"

*START
1
(SN SNP) THE
(ADJ) YOUNG
*DET+ADJ
2
(SN SNP) THE YOUNG
(SN) GIRL
*DET+NOUN
3
(SNP) THE YOUNG GIRL

e ¥ =
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11. Hierarchy of LA-grammar

11.1 Generative capacity of unrestricted LAG

11.1.1 Generative capacity of unrestricted LA-grammar

Unrestricted LA-grammar accepts and generates all and only the recursive languages.
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11.1.2 Theorem 1

Unrestricted LA-grammar accepts and generatdgthe recursive languages.

Proof: Assume an input string of finite length Each word in the input string has a finite number of readings
(> 0).

Combination step 1: The finite set of start stateg &ifid all readings of the first word;wesult in a finite set of
well-formed expressions WE= {(ss’ rps) | ss’e (W' x CM)}.

Combination step n: Combination step k-1>k1, has produced a finite set of well-formed expressions, WE
{(ss’rp;) | i e n, ss’e (W x C*) and the surface of each ss’ has length k}. The next wordvhas a finite
number of readings.

Therefore, the Cartesian product of all elements of,VeEd all readings of the current next word will be a finite
set of pairs. Each pair is associated with a rule package containing a finite set of rules. Therefore, combin:
step k will produce only finitely many new sentence starts. The derivation of this finite set of new sentence s
Is decidable because the categorial operations are defined to be total recursive functions.

Q.E.D.
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11.1.3 Theorem 2

Unrestricted LA-grammar accepts and generatlesecursive languages.

Proof. Let L be a recursive language with the alphabet W. Because L is recursive, there is a total recur
functiono: W* — {0,1}, i.e., the characteristic function of L. Let LAGbe an LA-grammar defined as follows:

The set of word surfaces of LAGs W.
The set of category segments G.#W U {0,1}.

For arbitrarye, f e W, [e ()] e LX ifand only if e = f.

LX=4er {[a(@)], [b(b)], [c(c)], [d(d)],...}

STs =aer {[(s€9c) {11, r2}]}, where seg. e {a, b, c,d,. . . }
ri: (X) (seg.) = (Xseq)  {r.r}

rz: (X) (seq) = o(Xseg) {}

STr =qey {[ (1) rp2]}

After any given combination step, the rule packageafbers two choices: application of to continue reading
the input string, or application of to test whether the input read so far is a well-formed expression of L. In th
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latter case, the functiop is applied to the concatenation of the input categories, which are identical to the inp
surfaces. If the result of applying is [(1) rp;], the input surface is accepted; if it is [(0)Apit is rejected.

Since the categorial operations of LA@an be any total recursive function, LAGnay be based op, the
characteristic function of L. Therefore, LAGaccepts and generates any recursive language.

Q.E.D.

11.1.4 Definition of the class of A-LAGS.

The class of A-LAGs consists of unrestricted LA-grammars and genathtesursive languages.
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11.2 LA-hierarchy of A-, B-, and C-LAGs

11.2.1 Parameters of complexity

e Theamountof computation per rule application required in the worst case.
e Thenumberof rule applications relative to the length of the input needed in the worst case.

11.2.2 Main approaches to restricting LA-grammar

R1: Restrictions on the form of categorial operations in order to limit the maximal amount of computation
required by arbitrary rule applications.

R2: Restrictions on the degree of ambiguity in order to limit the maximal number of possible rule appli-
cations.

11.2.3 Possible restrictions on categorial operations

R1.1: Specifying upper bounds for thengthof categories;
R1.2: Specifying restrictions opatternsused in the definition of categorial operations.
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11.2.4 Definition of the class of B-LAGs.

The class oboundedLA-grammars, or B-LAGSs, consists of grammars where for any complete well-
formed expression E the length of intermediate sentence start categories is boukdeal, byheren is
the length of E and is a constant.
11.2.5 Rule schemata with constant categorial operations
ri. (seg...seg X) cat, = cag rp;
r;: (X seq...seg) cab = cat rp;
r;: (seq...seg, X seg,1...Seq) cat = cag rp;
11.2.6 Rule schema with nonconstant categorial operation
ri. (X seq...seg Y) cat, = cat rp;

11.2.7 Definition of the class of C-LAGS.

The class otonstant_A-grammars, or C-LAGS, consists of grammars in which no categorial operation
co; looks at more thak segments in the sentence start categories, for a finite cokstant
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11.2.8 The hierarchy of A-LAGs, B-LAGSs, and C-LAGs

The class of A-LAGs accepts and generates all recursive languages, the class of B-LAGs accepts ar
generates all context-sensitive languages, and the class of C-LAGs accepts and generates many conte
sensitive, all context-free, and all regular languages.
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11.3 Ambiguity in LA-grammar

11.3.1 Factors determining the number of rule applications

The number of rule application in an LA-derivation depends on

1. the length of the input;
2. the number of rules in the rule package to be applied in a certain combination to the analyzed input pair
3. the number of readings existing at each combination step.

11.3.2 Impact on complexity

e Factor 1 is grammar-independent and used as the lengtformulas characterizing complexity .
e Factor 2 is a grammar-dependent constant.

e Only factor 3 may push the total number of rule applications beyond a linear increase. Whether for a gi
input more than one rule in a rule package may be successful depends on the input conditions of the rul
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11.3.3 Regarding factor 3: Possible relations between the input conditions of two rules

1. Incompatiblenput conditions: if there exist no input pairs which are accepted by both rules.

Examples: (a X) (b) (a X) (b)
(c X) (b) (@ X) (c)

2. Compatiblenput conditions: if there exists at least one input pair accepted by both rules and there exist
least one input pair accepted by one rule, but not the other.

Examples: (a X) (b)
(X'a) (b)

3. Identicalinput conditions: if all input pairs are either accepted by both rules or rejected by both rules.

11.3.4 Definition of unambiguous LA-grammars

An LA-grammar is unambiguous if and only if (i) it holds for all rule packages that their rules have
incompatiblenput conditions and (ii) there are no lexical ambiguities.
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11.3.5 Definition of syntactically ambiguous LA-grammars

An LA-grammar is syntactically ambiguous if and only if (i) it has at least one rule package containing
at least two rules witlkcompatibleinput conditions and (ii) there are no lexical ambiguities.

11.3.6 +global syntactic ambiguity

A syntactic ambiguity is called +global if it is a property of the whole sentence.
Example:Flying air planes can be dangerous.

11.3.7 —global syntactic ambiguity

A syntactic ambiguity is called -global if it is a property of only part of the sentence.
Example:The horse raced by the barn fell.

11.3.8 Role of thetglobal distinction

In LA-grammar, the difference between +global and —global ambiguities consists in whether more than
reading survives to the end of the sentence (example 11.3.6) or not (example 11.3.4)glbbal distinction
has no impact on complexity in LA-grammar and is made mainly for linguistic reasons.
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11.3.9 +recursive syntactic ambiguity

An ambiguity is +recursive, if it originates within a recursive loop of rule applications.

Examples: the C-LAGs fowW! (cf. 11.5.6) and WW (cf. 11.5.8), which are —global, andSobsetSum (cf.
11.5.10), which are +global.

11.3.10 -recursive syntactic ambiguity

An ambiguity is —recursive, if none of the branches produced in the ambiguity split returns to the state wt
caused the ambiguity.

Examples: the C-LAG foa*b*c™d™ U a*b™c™d* (cf. 11.5.3), which is +global, and the C-LAGs for natural
language in Chapter 17 and 18, which exhibit both +global and —global ambiguities.

11.3.11 Role of thetrecursive distinction

The +recursive distinction is crucial for the analysis of complexity because it can be shown that in LA
grammars with nonrecursive ambiguities the maximal number of rule applications per combination stepis lim
by a grammar-dependent constant.
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11.3.12 Theorem 3

The maximal number of rule applications in LA-grammar with only —recursive ambiguities is
(n— (R —2))- 20+

forn > (R - 2), wheren is the length of the input anfd is the number of rules in the grammar.

Proof: Parsing an input of length requiregn — 1) combination steps. If an LA-grammar hi@sules, then one
of these rules has to be reapplied afeecombination steps at the latest. Furthermore, the maximal number ¢
rule applications in a combination step for a given readirfg.is

According to the definition of —recursive ambiguity, rules causing a syntactic ambiguity may not be reapplie
a time-linear derivation path (reading). The first ambiguity-causing rule may produce a maximum of R-1 n
branches (assuming its rule package contains all R rules except for itself), the second ambiguity causing
may produce a maximum of R — 2 new branches, etc. If the different rules of the LA-grammar are defined v
their maximally possible rule packages, then after R — 2 combination steps a maximuiT 6f 2adings is
reached.

Q.E.D.
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11.4 Complexity of grammars and automata

11.4.1 Choosing the primitive operation

The Griffith and Petrick data is not in terms of actual time, but in terms of “primitive operations.” They
have expressed their algorithms as sets of nondeterministic rewriting rules for a Turing-machine-like
device. Each application of one of these is a primitive operation. We have chosen as our primitive
operation the act of adding a state to a state set (or attempting to add one which is already there). W
feel that this is comparable to their primitive operation because both are in some sense the most comple
operation performed by the algorithm whose complexity is independent of the size of the grammar anc
the input string.

J. Earley 1970, p. 100

11.4.2 Primitive operation of the C-LAGs

The primitive operation of C-LAGs is a rule application (also counting unsuccessful attempts).
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11.5.1 The subclass of C1-LAGs

A C-LAG is a C1-LAG if it is not recursively ambiguous. The class of Cl-languages parses in linear
time and contains all deterministic context-free languages which can be recognized by a DPDA without
e-moves, plus context-free languages with —recursive ambiguities, a&lgfic™d™ U a“b™c™d", as

well as many context-sensitive languages, ealfjb*ct, a*b*c*d*e*, {a*b*c"}*, Lyquare, LS. .,, @2,
akb™ck™ anda®, whereby the last one is not even an index language.

11.5.2 C1-LAG for context-sensitivea®

LX =g4er {[a (@)1}
STs =gey {[(@) { r1}1}

r: (@ (@ = (aa) {r2}
r2: (axX) (a) = (Xbb) {ra, r3}
r3: (bX) (a) = (Xaa) {ro, r3}

STr =des {[(@a) rp1], [(bXb) rp:], [(aXa) rps]}.
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11.5.3 C1-LAG for ambiguousa®b®c™d™ U a*b™c™d*

LX =4es {[a (a)], [b (b)], [c (c)], [d (d)]}
STs =des {[(@) {r1, r2, r5}]}

r:(X) (@ = @X) {ry,r,rs}

rz: (@X) (b) = (X) {rg,r3}

r3: (X) () = (c X) {rs,ra}

rg: (€ X) (d) = (X)  {r4}

r5: (X) (b)) = (bX) {rs5, re}

rs: (b X) (¢) = (X) {re 7}
r2(@x) () =X) {r}

STr =aes {[ € rpal, [€ rprl}
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11.5.4 The Single Return Principle (SRP)

A +recursive ambiguity is single return, if exactly one of the parallel paths returns into the state resulting
in the ambiguity in question.

11.5.5 The subclass of C2-LAGSs

A C-LAGisa C2-LAGI fitis SR-recursively ambiguous. The class of C2-languages parses in polynomial
time and contains certain nondeterministic context-free languageSvike' andL° ., plus context-
sensitive languages liIR&/W, W53 IWWWY}*, andW; W, WEWEY,

CF LAE (©1999 Roland Hausser



FoCL, Chapter 11: Hierarchy of LA-grammar 186
11.5.6 C2-LAG for context-freeWw"?

LX =4er {[a(a)], [b(b)], [c(c)],[d(d)]...}

STs =ger {[(s€q.) {r1, r2}]}, where seg. e {a, b, c, d,. ..}
ri: (X) (seg) = (seg X) {r1, r2}

r2: (seg. X) (seg.) = (X){ra}

STr =dey {[ € rpal}

11.5.7 Derivation structure of the worst case invVwW=®

rules: analyses:

2 a$ a

12 2 aa$$ aa
11222 aaa$aaa
11122 aaaa$gaa
11112 aaaaa$la
11111 aaaaaat
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11.5.8 C2-LAG for context-sensitive\VW

LX =4er {[a(a)], [b(b)], [c(c)], [d(d)]...}

STs =4er {[(s€9c) {11, r2}]}, Wwhere seg. e {a, b, c,d,. . . }
ri: (X) (seq) = (Xsegq.){ri ra}

rp: (seg X) (seg) = (X)  {r}

STr =qey {[ € rp2l}

11.5.9 C2-LAG for context-sensitiveV; Wy W Wi

LX =4y {[a(a)], [b (b)]}

STs =qer {[(s€Qc) {r1a}], [(s€9c) {r1:}]}, Where seg., seg; € {a, b}
ra: (seg)  (seq) = (#segsegq) {r2,rs}

rp: (seg)  (seq) = (seq #seq) {r3, rs}

ra: (X) (seg) = (Xsegq) {rz, r3}
r3: (X) (seg) = (seg X) {r3,ra}
ry: (Xseg) (seg) = (X) {ra, 15}
rs: (seg X #) (seg) = (X) {re}
re: (seg X) (seq) = (X) {re}

STr =dey {[ € 1Ps], [€ rpel}
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11.5.10 C3-LAG for SubsetSum.

LX =4er {[0(0)], [1 (1)], [# A)]}
STs =des {[(s€9c) {r1. r2}1}, where seg. € {0, 1}
seg ¢ {0, 1}
ri: (X) (seg) = (seg X){ri, ro}
ra: (X) (#) = (#X)  {rs,r4 16,17, 112, 114}
r3: (Xseg) (seg) = (0X) {rs, rq, 16,17}
rg: (X#)  (#) = (#X)  {rs,r4, 16 17, 112, 14}
r5: (Xseg) (seg) = (0X) {rs r6 r7, 111}
re: (X1) (0) = (LX) {rs.r6. 17,111}
r7: (X 0) (1) = (LX)  {rs,r9, 110}
rg: (Xseg) (seg) = (LX) {rs,ro, rio}
re: (X'1) (0) = (0X) {rs. 16,77, 111}
ro: (X0) (1) = (0X)  {rs,r9, 110}
i (X#)  (#) = (#X)  {rs,r4, 16, 17, 112, 14}
rig: (X0) (seg) = (0X) {rg ri2, ria}
ri3: (X0) (seg) = (0X) {ri1,r3,ri4}
ra: (X1) (seg) = (1X) {ri1,rzria}
STr =gey {[(X) rp 4]}
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11.5.11 Types of restriction in LA-grammar

0. LA-type A: no restriction

1. LA-type B: The length of the categories of intermediate expressions is limitekd hywherek is a constant
andn is the length of the inputiR1.1, amount).

2. LA-type C3: The form of the category patterns results in a constant limit on the operations required by
categorial operationg{1.2, amount).

3. LA-type C2: LA-type C3 and the grammar is at most SR-recursively ambigu®2srumber).
4. LA-type C1: LA-type C3 and the grammar is at most —recursively ambigug@@sriumber).
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11.5.12 LA-grammar hierarchy of formal languages

restrictions

types of LAG languages complexity
LA-type C1 C1l-LAGs C1 languages linear
LA-type C2 C2-LAGs C2 languages polynomial
LA-type C3 C3-LAGs C3 languages exponential
LA-type B B-LAGs B languages exponential
LA-type A A-LAGs A languages exponential

e ¥ =
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12. LA- and PS-hierarchies in comparison
12.1 Language classes of LA- and PS-grammar

12.1.1 Complexity degrees of the LA- and PS-hierarchy
LA-grammar PS-grammar
undecidable — recursively enumerable languages
A-languages

exponential B-languages context-sensitive languages
C3-languages

polynomial C2-languages context-free languages
linear Cl-languages regular languages
CF fa=
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12.2 Subset relations in the two hierarchies

12.2.1 Subset relations in the PS-hierarchy
regular lang.C context-free langC context-sensitive langC rec. enum. languages
12.2.2 Subset relations in the LA-hierarchy

Cl-languages. C2-languages. C3-languages_ B-languages_ A-languages
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12.3 Non-equivalence of the LA- and PS-hierarchy

12.3.1 Languages which are in the same class in PS-grammatr, but in different classes in LA-grammar

a“b* andWW" are in the same class in PS-grammar (i.e. context-free), but in different classes in LA-gramn
a“b* is a C1-LAG parsing in linear time, whid/W® is a C2-LAG parsing im?.

12.3.2 Languages which are in the same class in LA-grammar, but in different classes in PS-grammar

a“b* anda®bck are in the same class in LA-grammar (i.e. C1-LAGSs), but in different classes in PS-gramm
a*b¥ is context-free, whilab*c" is context-sensitive.

12.3.3 Inherent complexity

The inherent complexity of a language is based on the number of operations required in the worst cas
an abstract machine (e.g. a Turing or register machine). This form of analysis occurs on a very low I
corresponding to machine or assembler code.

12.3.4 Class assigned complexity

The complexity of artificial and natural languages is usually analyzed at the abstraction level of grammar
malisms, whereby complexity is determined for the grammar type and its language class as a whole.
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12.3.5 Difference between the two types of complexity

Languages which are inherently of high complexity (e.g. 3SAT and SUBSET SUM) are necessarily in a h
complexity class (here exponential) in any possible grammar formalism.

Languages which are inherently of low complexity (eafb*cX) may be assigned high or low class complexity,
depending on the formalism.

12.3.6 PS-Grammar ofL,,,

S— 131 S— 1S S—#
S— 00 S— 0S
12.3.7 PS-grammar derivation of 10010#101 ih,,,
derivation tree: generated chains: states:
S
T T 1.1 1S1.
1 s 1 1s1 1.S
IS 0.S0 0S0.
0O S O 10S01 0.S
| 0.S0
0 S 100S01 0.S 0s.
N 1.51 1SL.
1 S 1 1001S101 1.S
e 0.S0
0 ? 10010S101 0.s Os.
# 10010#101 #.
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12.3.8 C3-LAG for L,

LX =4er {[0(0)], [1 (1)], [# )]}
STs =4er {[(s€9c) {r1, 12, 13,14, 15}] }, Where seg., seg; € {0, 1}.

r: (seg)(seq) = € {ri,r2,r3, 14, 15}
rz: (seg)(seg) = (seq)  {rira,r3,rq, 15}
r3: (X)(seg.) = (X) {rirg,r3, 14,15}
ry: (X)(seg.) = (seg X) {rira,r3, 14,15}
r5: (X)(#) = (X) {re}
re: (seg X)(seg) = (X) {re}

STr =des {l € rpsl}
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12.4 Comparing the lower LA- and PS-classes

Context-free PS-grammar has been widely used because it provides the greatest amount of generative ca
within the PS-grammar hierarchy while being computationally tractable.

12.4.1 How suitable is context-free grammar for describing natural and programming languages?

There is general agreement in linguistics that context-free PS-grammar does not properly fit the structures
acteristic of natural language. The same holds for computer science:

It is no secret that context-free grammars are only a first order approximation to the various mechanism:
used for specifying the syntax of modern programming languages.
S. Ginsberg 1980, p.7

12.4.2 Conservative extensions of the PS-grammar hierarchy

regular lang.C context-free langC TAL C index lang.C context-sensitive langcC r.e. languages
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12.4.3 Orthogonal relation between C- and cf-languages

myﬂexbﬂeelanguages

e | ™
/@ 3SAT  SUBSET-SUM
4 WWER|  ww WM
At
akbkck
akb*ckdkek
a2
an! Cl
\ %
C2
NG J
C3
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12.4.4 OrthogonalL4.¢, L.f, C1, Co, and C; classifications

-

-

-

C3)

C2
CI
1
Mi ., WW SUBSET-SUM
k>2
hast %St 3SAT
/K’cf \
k>2
LhEst ﬁst HCFL
ok 1k uok 12k wwh
Licf
. Lrose Lno
Lrabin
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12.5 Linear complexity of natural language

12.5.1 Why the natural languages are likely to be C-languages

In a context-sensitive language which is not a C-language, the category length would have to grow just wi
the LBA-definition of context-sensitive languages, but grow faster than the pattern-based categorial opera
of the C-LAGs would permit.

That this type of language should be characteristic for the structure of natural language is highly improbabile
12.5.2 If the natural languages are C-LAGs

then the following two questions are equivalent:

(i) How complex are the natural languages?

(i) How ambiguous are the natural languages?

This is because the C-LAG subclasses differ solely in their degrees of ambiguity.
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12.5.3SLIM -theoretic analysis of ambiguity

syntactic semantic pragmatic
surface surface surface
cat, cat, catg catg
semy sem,, semy sem,, semy
_ | | | | |
context disambiguates context disambiguates contextual ambiguity

12.5.4 Multiple interpretations of prepositional phrases: a syntactic or a semantic ambiguity?

The man saw the girl with the telescope.
Julia ate the apple on the table behind the tree in the garden.
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12.5.5 Incorrect analysis of a semantic ambiguity

analysis 1: analysis 2:

The osprey is looking for a perch The osprey is looking for a perch

[kind of fish [place to roost

?
||

contextual referent

12.5.6 Correct analysis of a semantic ambiguity

The osprey is looking for a perch

[kind of fish [place to roost

?
|__|

contextual referent

e ¥ =

(©1999 Roland Hausser



FoCL, Chapter 12: LA- and PS-hierarchies in comparison)

202

12.5.7 Incorrect analysis: a recursive pseudo-ambiguity

number of readings: 2

on the table
postnominal

Julia ate the apple

on the table
adverbial

2° 2°

in the garden.

_ postnominal
behind the tree
postnominal

———__in the garden.

adverbial

in the garden.

_ postnominal
behind the tree
adverbial

———__in the garden.

adverbial

in the garden.

_ postnominal
behind the tree
postnominal

———__in the garden.

adverbial

in the garden.

_ postnominal
behind the tree
adverbial

T __inthe garden.

adverbial
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12.5.8 Correct analysis withsemantic doubling

Julia ate the apple vetible] [b?t%e] [i?g@]
[adv] [onm]  [adv] [ponm]  [adv] [pnm]
? ? ”?

12.5.9 CoNSyx hypothesis (Complexity of natural language syntax)

The natural languages are contained in the class of C1-languages and parse in linear time.

This hypothesis holds as long as no recursive ambiguities are found in natural language.
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